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This is joint work with Jukka Corander (Univ. of Helsinki), Johan
Pensar and Henrik Nyman (both at Åbo Academy University).
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Background

Directed acyclic graphs (DAGs) have gained widespread popularity
as representations of complex multivariate systems.
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Background

Despite their advantageous properties for representing
dependencies among variables in a modular fashion, several
proposals for making them more flexible and parsimonious have
been presented.
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Extending and bringing together of:

Boutilier, C. et.al.: Context-specific independence in Bayesian
networks, Proceedings of the Twelfth international conference
on Uncertainty in artificial intelligence, pp. 115−123, 1996.

Geiger, D. and Heckerman, D.: Knowledge representation and
inference in similarity networks and Bayesian
multinets,Artificial Intelligence, 82, pp. 45−74, 1996.

Corander, J.: Labelled graphical models, Scandinavian journal
of statistics, 30, 3, pp. 493−508, 2003.
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Conditional Independence

A DAG encodes independence statements in the form of
conditional independencies.

The textbook definition: Two random variables X and Y are
conditionally independent given a third random variable Z if and
only if they are independent in their conditional probability
distribution given Z. That is, X and Y are conditionally
independent given Z if and only if, given any value of Z, the
probability distribution of X is the same for all values of Y and the
probability distribution of Y is the same for all values of X.
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Conditional Independence (CI)

Two random variables X and Y are conditionally independent
(CI) given a third random variable Z if and only if they are
independent in their conditional probability distribution given
Z. That is, X and Y are conditionally independent given Z if
and only if, given any value of Z, the probability distribution of
X is the same for all values of Y and the probability distribution
of Y is the same for all values of X.

P(X = x | Y = y ,Z = z) = P(X = x | Z = z),

P(Y = y | X = x ,Z = z) = P(Y = y | Z = z)

⇔

P(X = x ,Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)
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CI: irrelevance

If we know Z, then Y is irrelevant for prediction of X

P(X = x | Y = y ,Z = z) = P(X = x | Z = z),

If we know Z, then X is irrelevant for prediction of Y

P(Y = y | X = x ,Z = z) = P(Y = y | Z = z)
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{Xn}n≥1 is a time homogeneous Markov chain, n is “time’. An
equivalent formulation of the Markov property is

P(X1 = x ,X3 = y | X2 = z) = P(X1 = x | X2 = z)P(X3 = y | X2 = z)

i.e., past and future are CI given the present.
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In general independence does not imply CI

Let Ω = {1, 2, 3, 4, 5, 6, 7, 8} and set pi = P(i) = 1
8
Set X = the

indicator function of = {1, 2, 3, 4} and Y = the indicator
function of = {3, 4, 5, 6} and Z = the indicator function of
{2, 3, 4, 5}. Then X and Y are independent but they are not
conditionally independent given Z .
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Independence lost under conditioning

X and Y are independent Bernoulli random variables with
P(X = 1) = P(Y = 1) = p, 0 < p < 1. Set Z = X + Y . Then
P(X = 1 | Z = 1) > 0 and P(Y = 1 | Z = 1) > 0 but

P (X = 1,Y = 1 | Z = 1) = 0.
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Berkson’s phenomenon or selection bias

Another example showing that X independent of Y neither implies
nor is implied by X and Y being CI given Z . Let Z denote the
event that someone is admitted to a (US ?) college, which is made
true if they are either brainy (X ) or sporty (Y ). Suppose in the
general population, X and Y are independent (due to Kevin
Murphy).
Now look at a population of college students, those for which Z is
observed to be true. It will be found that being brainy makes you
less likely to be sporty and vice versa, because either property
alone is sufficient to explain the evidence on Z , i.e.,
P(Y = 1|Z = 1,X = 1) ≤ P(Y = 1|Z = 1)).
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Bayesian statistics and CI

Assume that Xi ∼ f (x | θ) for i = 1, . . . , n., and that θ is an
outcome of a random variable Θ ∼ fΘ(θ) (=prior density). Then
Bayesian statistics evokes the model

Xi ⊥ Xj | Θ, i 6= j

Xi , i = 1, . . . , n, are conditionally independent and identically
distributed (I.I.D.)
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Graphoids

A dependency model M over a finite set of variables U is is any
set of triplets X ,Y ;Z of disjoint subsets of U. The interpretation
of M is that (X ,Y ;Z ) belongs to M if and only if X is
independent of Y given Z , we write this as I (X ,Y ;Z ).

Example: Any probability distribution p gives a dependence
model, which we write as M= I(p). I (X ,Y ;Z ) designates then
CI.
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Graphoids

A graphoid is any dependency model M for which the following
set of axioms holds:

Triviality: I (X , ∅|Z ) ∈ M

Symmetry: I (X ,Y ;Z ) ∈ M ⇒ I (Y ,X ;Z ) ∈ M.

Decomposition: I (X ,Y ∪W ;Z ) ∈ M ⇒ I (Y ,X ;Z ) ∈ M.

Weak union: I (X ,Y ∪W ;Z ) ∈ M⇒ I (Y ,X ;Z ∪W ) ∈ M.

Contraction: I (X ,Y ;Z ) ∈ M&I (X ,W ;Y ∪ Z ) ∈ M⇒ I (Y ∪W ,X ;Z )
∈ M.
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References (on graphoids)

This set of lectures will not be getting into the theory of
(semi)graphoids. The point of the theory is that the axioms
describe other notions of dependence than just probabilistic- a
basic reference is:

M.Studený: Probabilistic conditional independence structures,
2005.

We have performed no check of the graphoid axioms for
context-specific independence.

TK ML Summer School in Reykjavik, 2014



DAG

A DAG is a graph that is built up by nodes and directed edges.
The acyclic property ensures that no directed path starting from a
node leads back to that particular node.
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Notation

A DAG will be denoted by G = (V ,E ) where V = {1, . . . , d} is
the set of nodes and E ⊂ V × V is the set of edges such that if
(i , j) ∈ E then the graph contains a directed edge from node i to j .
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Notation:Parent set

Nodes, from which there is a directed edge to node j , are called
parents of j and the set of all such nodes is denoted by
Πj = {i ∈ V : (i , j) ∈ E}. The nodes V give the indices of a set
of stochastic variables X = {X1, . . . ,Xd}.
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Notation

Due to the close relationship between a node and its corresponding
variable, the terms node and variable are used interchangeably. We
use small letters xj to denote a value taken by the corresponding
variable.

TK ML Summer School in Reykjavik, 2014



Notation

If S ⊆ V , then XS denotes the corresponding set of variables. The
outcome space of a variable Xj is denoted by Xj and the joint
outcome space of a set of variables by the Cartesian product
XS = ×j∈SXj . The cardinality of the outcome space of XS is
denoted by |XS |.
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CI

A DAG encodes independence statements in the form of
conditional independencies.

Definition

Conditional Independence (CI)
Let X = {X1, . . . ,Xd} be a set of stochastic variables where
V = {1, . . . d} and let A, B , S be three disjoint subsets of V . XA

is conditionally independent of XB given XS if

p(xA | xB , xS ) = p(xA | xS)

holds for all (xA, xB , xS ) ∈ XA ×XB ×XS whenever
p(xB , xS ) > 0. This will be denoted by

XA ⊥ XB | XS .

If we let XS = ∅, then XA ⊥ XB simply denotes marginal
independence between the two sets of variables.
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Local Directed Markov

A probability function p over the random vector X = (X1, . . . ,Xd )
satisfies the local directed Markov condition with respect to a DAG
G = (V ,E ) or, equivalently, if and only if there is an ordering of

the variables σ such that Π
(σ)
j ∈ {Xσ(1), . . . ,Xσ(j−1)} for each

j ∈ {1, . . . , d} and such that Xσ(j) is conditionally independent,

given Π
(σ)
j (the set of parents of Xσ(j)) of all the variables in the

set V \(V
(σ)
j ∪Π

(σ)
j ), where V

(σ)
j is the set of all descendants of

Xσ(j).
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Bayes Networks

Let p be a probability distribution over a set of variables
V = {X1, . . . ,Xd}. Then p satisfies the l.d.m.p. with respect to a
graph G = (V ,E ) if and only if there is an ordering of the
variables σ such that p factorises along G, i.e.,

p(X1, . . .Xd ) =
d

∏
j=1

p(Xj | XΠj
), (1)

where the factors are conditional probability tables (CPTs) that
correspond to local structures. By local structure, we refer to the
node itself, its parents and the edges from the parents to the node.
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Bayes Networks

The pair (p,G) with

p(X1, . . .Xd) =
d

∏
j=1

p(Xj | XΠj
), (2)

is a Bayes(ian) network.
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Bayes networks

X Y 
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W
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NODE 

p(Z ,X ,Y ,W ) = p(Z |X ,Y )p(Y |X ,W )p(X |W )p(W )
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Conditional Probability Table (CPT)

Z , X , Y assume two values t and f in the DAG above. Textbook
style CPT (=conditional probability table)

pZ |X ,Y (t |., .) =
X\Y t f

t 0.5 0.99
f 0.85 0.0001.
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Background: Contex Specific Independence

The constraints imposed by the structure of a DAG alone have
been recognized to be unnecessarily stringent under certain
circumstances where context-specific or asymmetric independence
can play a natural role.
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Background: Contex Specific Independence

In particular, one important notion is to allow the dependencies to
have local structures, such that a node need not explicitly depend
on all the combinations of values of its parents. This leads to
context-specific independence (CSI) which can substantially reduce
the parametric dimensionality of a network model and lead to a
more expressive interpretation of the dependence structure.

TK ML Summer School in Reykjavik, 2014



CPT with a regularity

Z , X , Y assume two values t and f in the DAG above. A CPT is

pZ |X ,Y (t |., .) =
X\Y t f

t 0.6 0.6
f 0.85 0.0001.

I.e., for y ∈ {t, f } and z ∈ {t, f },

pZ (Z = z | X = t,Y = y ) = pZ (Z = z | X = t).
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An Example due to Geiger and Heckerman. loc.cit.

A guard of a secured building expects three types of persons (h) to
approach the building’s entrance: workers in the buildings,
approved visitors, and spies. As a person approaches the building,
the guard can note its gender (g) and whether or not the person
wears a badge (b). Spies are mostly men. Spies always wear
badges in an attempt to fool the guard. Visitors don’t wear badges
because they don’t have one. Female workers tend to wear badges
more often than do male workers. The task of the guard is to
identify the type of person approaching the building.

TK ML Summer School in Reykjavik, 2014



the spy/visitor/worker-scenario

The topology of this graph, however, hides the fact that gender
and badge wearing are conditionally independent, given that the
person is a spy or visitor. The corresponding joint probability
distribution is, as a result of this, overparameterized in the sense
that it requires a total of 11 free parameters although some of
these are identical.
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the spy/visitor/worker-scenario

Geiger and Heckerman noticed that this scenario is better
represented by multiple graphs.
This representation of the scenario is made up of two
context-specific graphs that together show that the dependence
between gender and badge wearing only holds in the context of the
person being a worker. The corresponding joint probability
distribution now only requires 9 free parameters.
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Graph structures describing the spy/visitor/worker-scenario
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the spy/visitor/worker-scenario

Now consider the labeled DAG on the bottom in Figure. We have
added the label {spy , visitor} to the edge (g , b). This label implies
that gender and badge are independent given that the person
approaching the building is a spy or a visitor.
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Background: Contex Specific Independence

A generalization of the CSI models: by allowing the independencies
to be represented in terms of labels for the parental configurations
of a node.
The approach here introduces a partition of the parental
configurations into classes with invariant conditional probability
distributions for the outcomes that are assigned to the same class.
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Background: Contex Specific Independence

It is shown that such a definition leads to a model class with a
number of desirable properties, and we derive several properties of
the models, including their identifiability and an LDAG version of
the concept of a Markov equivalence class.
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Context-Specific Independence

The topology of a DAG restricts it to only encoding for
independence relations that hold globally. However, as seen by the
scenario above it is natural to consider independence relations that
only hold in certain contexts.

Definition

Context-Specific Independence (CSI)
Let X = {X1, . . . ,Xd} be a set of stochastic variables where
V = {1, . . . d} and let A, B , C , S be four disjoint subsets of V .
XA is contextually independent of XB given XS and the context
XC = xC if

p(xA | xB , xC , xS ) = p(xA | xC , xS ) ,

holds for all (xA, xB , xS ) ∈ XA ×XB ×XS whenever
p(xB , xC , xS) > 0.
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Context-Specific Independence

Definition

Context-Specific Independence (CSI)
Let X = {X1, . . . ,Xd} be a set of stochastic variables where
V = {1, . . . d} and let A, B , C , S be four disjoint subsets of V .
XA is contextually independent of XB given XS and the context
XC = xC if

p(xA | xB , xC , xS ) = p(xA | xC , xS ) ,

holds for all (xA, xB , xS ) ∈ XA ×XB ×XS whenever
p(xB , xC , xS) > 0. This is denoted by

XA ⊥ XB | xC ,XS .
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Context-Specific Independence

The definition is valid for any probability distribution. Let
X[1,X2,X3 be binary r.v.’s and assume that X2 ⊥ X3 | X1 = 1 and

X1 ⊥ X3 | X2 = 1, so that

P(X1 = 1,X2 = x2,X3 = x3) = P(X1 = 1)P(X2 = x2 | X1 = 1)P(X3 = x3 | X1 = 1)

for all outcomes x2 ∈ {0, 1}, x3 ∈ {0, 1} and

P(X1 = x1,X2 = 1,X3 = x3) = P(X2 = 1)P(X1 = x1 | X2 = 1)P(X3 = x3 | X2 = 1)

for all outcomes x1 ∈ {0, 1}, x3 ∈ {0, 1}.
This pair of restrictions implies a simplification

P(X3 = x3 | X1 = 1) = P(X3 = x3 | X2 = 1) = P(X3 = x3 | X1 = 1,X2 = 1).
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Local CSI

It has been discovered by numerous authors that certain CSIs can
naturally be captured simply by further refining (2). We will refer
to these statements as local CSIs as they are confined to the local
structures.

Definition

Local CSI in a DAG
A CSI in a DAG is local if it is of the form Xj ⊥ XB | xC , where B
and C form a partition of the parents of node j .

In the CPD-based approaches to including CSI, the context-specific
local structures cannot be read directly off the graph structure.
This is the key to the usefulness of multinets. A multinet offers a
natural representation of the dependence structure by explicitly
showing the independencies in a graphical form.

TK ML Summer School in Reykjavik, 2014



Local CSI

X Y 
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W

EDGE

NODE 

pZ |X ,Y (t |., .) =
X\Y t f

t 0.6 0.6
f 0.85 0.0001.
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Local CSI

pZ |X ,Y (t |., .) =
X\Y t f

t 0.6 0.6
f 0.85 0.0001.

Let us note that in this example that the outcome space of the
parent set (X ,Y ) is, as stated above, partitioned as
{(t, t), (t, f )} ∪ {(f , t)} ∪ {f , f )} where the set {(t, t), (t, f )}
corresponds to one and the same conditional distribution on Z .
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LDAG

We visualize the local CSIs directly as a part of a single graph
structure as done above; we add labels to the edges. This enables
incorporation of local CSIs in a single graph as opposed to multinet
-approaches, where one might need one graph for each distinct
context. An LDAG is now formally defined as a DAG with labels
representing local CSIs.

Definition

Labeled Directed Acyclic Graph (LDAG)
Let G = (V ,E ) be a DAG over the stochastic variables
{X1, . . . ,Xd}. For all (i , j) ∈ E , let L(i ,j) = Πj \ {i}. A label on
an edge (i , j) ∈ E is defined as the set

L(i ,j) =
{

xL(i ,j) ∈ XL(i ,j)
: Xj ⊥ Xi | xL(i ,j)

}

.
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LDAG

Definition

Labeled Directed Acyclic Graph (LDAG)
Let G = (V ,E ) be a DAG over the stochastic variables
{X1, . . . ,Xd}. For all (i , j) ∈ E , let L(i ,j) = Πj \ {i}. A label on
an edge (i , j) ∈ E is defined as the set

L(i ,j) =
{

xL(i ,j) ∈ XL(i ,j)
: Xj ⊥ Xi | xL(i ,j)

}

.

An LDAG is a DAG to which the label set
LE = {L(i ,j) : L(i ,j) 6= ∅}(i ,j)∈E has been added, it is denoted by
GL = (V ,E ,LE )
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Local CSI-structure and the corresponding CPT

-5cm-
5cm

XΠ1
p(X1 | XΠ1

)

X2 = 0∧X3 = 0∧X4 = 0 p1

X2 = 0∧X3 = 0∧X4 = 1 p3

X2 = 0∧X3 = 1∧X4 = 0 p4

X2 = 0∧X3 = 1∧X4 = 1 p4

X2 = 1∧X3 = 0∧X4 = 0 p2

X2 = 1∧X3 = 0∧X4 = 1 p3

X2 = 1∧X3 = 1∧X4 = 0 p5

X2 = 1∧X3 = 1∧X4 = 1 p5

TK ML Summer School in Reykjavik, 2014



Local CSI-structure and the corresponding local CSIs

L(2,1) = (0, 1) ⇒ X1 ⊥ X2 | (X3,X4) = (0, 1)

L(4,1) = X2 × {1} ⇒ X1 ⊥ X4 | X2 ∈ X2,X3 = 1

⇔ X1 ⊥ X4 | X2,X3 = 1
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Representing CPT

We use complete AND-rules to represent the distinct parent
configurations. A rule is complete if all parental variables are part
of it.
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Local CSI-structure and the corresponding CPT

-5cm-
5cm

XΠ1
p(X1 | XΠ1

)

X2 = 0∧X3 = 0∧X4 = 0 p1

X2 = 0∧X3 = 0∧X4 = 1 p3

X2 = 0∧X3 = 1∧X4 = 0 p4

X2 = 0∧X3 = 1∧X4 = 1 p4

X2 = 1∧X3 = 0∧X4 = 0 p2

X2 = 1∧X3 = 0∧X4 = 1 p3

X2 = 1∧X3 = 1∧X4 = 0 p5

X2 = 1∧X3 = 1∧X4 = 1 p5
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CPT trees

The regularities in the CPT above can be captured by the
CPT-tree. Each path in the tree corresponds to a rule that can be
described by the AND-operator. By simply traversing down each
distinct path until we reach a terminal node or leaf, we can
transform the CPT into its reduced counterpart on the right. All
parent configurations satisfying a certain rule give rise to the same
CPD. This implies that the rules in a reduced CPT must be
mutually exclusive for the representation to be minimal.
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Reduced CPT

-5cm-
5cm

XΠj
p(X1 | XΠj

)

X3 = 0∧X4 = 0∧X2 = 0 p1

X3 = 0∧X4 = 0∧X2 = 1 p2

X3 = 0∧X4 = 1 p3

X3 = 1∧X2 = 0 p4

X3 = 1∧X2 = 1 p5

TK ML Summer School in Reykjavik, 2014



Reduced CPT

Each path in the tree corresponds to a rule that is described by the
AND-operator. By simply traversing down each distinct path until
we reach a terminal node or leaf, we can transform the CPT into
its reduced counterpart on the right. All parent configurations
satisfying a certain rule give rise to the same CPD. This implies
that the rules in a reduced CPT must be mutually exclusive for the
representation to be minimal.
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Reduced CPT

The rules corresponding to a tree are mutually exclusive as two
distinct paths cannot lead to the same leaf. If a variable is not part
of a path (or the corresponding AND-rule), it implies that the
particular variable is contextually independent of the variable
associated with the CPT given the context encoded by the path
(or rule). Following this method we can read off the following local
CSIs:

X3 = 0∧ X4 = 1 ⇒ X1 ⊥ X2 | (X3,X4) = (0, 1)
X3 = 1∧ X2 = 0 ⇒ X1 ⊥ X4 | (X2,X3) = (0, 1)
X3 = 1∧ X2 = 1 ⇒ X1 ⊥ X4 | (X2,X3) = (1, 1)

}

⇔ X1 ⊥ X4 | X2,X3 = 1
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CPT trees

X3 = 0∧ X4 = 1 ⇒ X1 ⊥ X2 | (X3,X4) = (0, 1)
X3 = 1∧ X2 = 0 ⇒ X1 ⊥ X4 | (X2,X3) = (0, 1)
X3 = 1∧ X2 = 1 ⇒ X1 ⊥ X4 | (X2,X3) = (1, 1)

}

⇔ X1 ⊥ X4 | X2,X3 = 1

The CSIs above coincide with the labels of this specific LDAG.
More generally, any CPT-tree can be transformed into a reduced
CPT by mutually exclusive AND-rules. Subsequently, incomplete
rules can be turned into labels as illustrated in the above example.
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LDAG

Consider the LDAG on the top in the Figure. Its associated
minimal reduced CPT is shown later. This CSI-structure cannot be
compactly represented by the structure of a CPT-tree.
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LDAGs

To show how the minimal reduced CPT is recovered from the
labels we proceed stepwise. Each of the labels corresponds to a
single reduced AND-rule resulting in the table.

XΠ1
p(X1 | XΠ1

)

X2 = 0∧X3 = 0∧X4 = 0 p1

X2 = 0∧X3 = 0∧X4 = 1 p2

X2 = 0 ∧X3 = 1 p3

X2 = 1∧X3 = 0∧X4 = 0 p4

X2 = 1∧X3 = 0∧X4 = 1 p5

X3 = 1 ∧X4 = 0 p3

X2 = 1∧X3 = 1∧X4 = 1 p6
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LDAGs

XΠ1
p(X1 | XΠ1

)

X2 = 0∧X3 = 0∧X4 = 0 p1

X2 = 0∧X3 = 0∧X4 = 1 p2

X2 = 0 ∧X3 = 1 p3

X2 = 1∧X3 = 0∧X4 = 0 p4

X2 = 1∧X3 = 0∧X4 = 1 p5

X3 = 1 ∧X4 = 0 p3

X2 = 1∧X3 = 1∧X4 = 1 p6

The rules on row 3 and 6 are not mutually exclusive at this point
as they both are satisfied by the common parent configuration
(X2,X3,X4) = (0, 1, 0). This implies that any parent configuration
satisfying any of these rules must give rise to the same CPD.
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LDAGs

The AND-rules are therefore combined with the OR-operator
resulting in the minimal reduced CPT shown next. More generally,
each configuration in the labels of a local structure corresponds to
an AND-rule. If any two rules overlap, they are combined with the
OR-operator. The rules of a minimal reduced CPT created by this
method will thus be mutually exclusive and exhaustive with respect
to the outcome space of the parental variables.
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LDAGs

XΠ1
p(X1 | XΠ1

)

X2 = 0∧X3 = 0∧X4 = 0 p1

X2 = 0∧X3 = 0∧X4 = 1 p2

X2 = 0 ∧X3 = 1 p3

X2 = 1∧X3 = 0∧X4 = 0 p4

X2 = 1∧X3 = 0∧X4 = 1 p5

X3 = 1 ∧X4 = 0 p3

X2 = 1∧X3 = 1∧X4 = 1 p6
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CPT trees

⇓ ⇓ ⇓
XΠ1

p(X1 | XΠ1
)

X2 = 0 ∧X3 = 0 ∧X4 = 0 p1

X2 = 0 ∧X3 = 0 ∧X4 = 1 p2

(X2 = 0∧X3 = 1) ∨ (X3 = 1 ∧X4 = 0) p3

X2 = 1 ∧X3 = 0 ∧X4 = 0 p4

X2 = 1 ∧X3 = 0 ∧X4 = 1 p5

X2 = 1 ∧X3 = 1 ∧X4 = 1 p6
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CSI-consistency

A CPT-representation may in fact be viewed as a function that
given a parent configuration returns a CPD. The common factor
among the different CPD-based representations is that they all
induce partitions of the outcome space of the parental variables.

If the representation is based on the notion of CSI, the
corresponding partition will be referred to as CSI-consistent.
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The structure of LDAGs

d-separation
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The structure of LDAGs

d-separation: local directed Markov property gives local
CI-statements. Further CI-statements that follow from these
local statements are obtained by a graph theoretic criterion
known as d-separation.
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d-separation & Bayes Ball

In general, the conditional independence relationships encoded by a
DAG are best be explained by means of the ”Bayes Ball”
algorithm. Two (sets of) nodes A and B are conditionally
independent (d-separated) given a set C if and only if there is no
way for a ball to get from A to B in the graph, where the allowable
movements of the ball are shown below. Hidden nodes are nodes
whose values are not known, and are depicted as unshaded; the
nodes we condition on are shaded. The dotted arcs indicate
direction of flow of the ball.
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d-separation & Bayes Ball

The blue node corresponds to conditioning.
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d-separation & Bayes Ball

XA ⊥ XB ‖G XS
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d-separation

If a probability distribution factorises according to a directed
acyclic graph, then any d -separation statement in the graph
implies the corresponding conditional independence statement for
the distribution. The converse does not hold in general.

XA ⊥ XB ‖G XS ⇒ XA ⊥ XB | XS
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d-separation & Bayes Ball

Using the Bayes ball one now actually sees in the multinet of the
gatekeeper scenario above that b ⊥ g | h ∈ {spy , visitor}.
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Properties of LDAG

Definition

Maximal LDAG
An LDAG GL = (V ,E ,LE ) is called maximal if there exists no
configuration xL(i ,j) that can be added to the label L(i ,j) without
inducing an additional local CSI.

Simple: in a maximal LDAG, all local CSIs are obtained directly
from the graph.
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Properties of LDAG

Theorem

Let GL = (V ,E ,LE ) and G ∗L = (V ,E ,L∗E ) be two maximal
LDAGs with the same underlying DAG G = (V ,E ). Then GL and
G ∗L represent equivalent dependence structures if and only if
LE = L∗E , i.e. GL = G ∗L .
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XΠ1
∈ p(X1|XΠ1

)

X2 = 0 ∧ X3 = 0 ∧X4 = 0 p1
X3 = 0 ∧ X4 = 1 p3

X3 = 1 p4
X2 = 1 ∧ X3 = 0 ∧X4 = 0 p2
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Ilustration of Maximality of an LDAG

The local structure is similar to the previous example except that
configuration xL(2,1) = (1, 0) has been added to its label. The local

structure is now not maximal since (1, 1) can be added to L(2,1)

without resulting in an additional CSI.

xL(2,1) = (1, 0) ⇒ X3 = 1∧ X4 = 0

xL(4,1) = (0, 1) ⇒ X2 = 0∧ X3 = 1

xL(4,1) = (1, 1) ⇒ X2 = 1∧ X3 = 1











⇒ X3 = 1
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As (0, 1, 1) and (1, 1, 1) satisfy this rule, no further merging of
rules is done when xL(2,1) = (1, 1) is added to its label. This
corresponds to the local CSI

X1 ⊥ X2 | X3 = 1,X4 = 1

implicitly being encoded by the other labels. This type of situation
may arise when different label induced rules overlap and are
combined with the OR-operator in order to achieve a minimal
number of mutually exclusive rules.
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Regular Maximal LDAG

To ensure that the effect of an edge cannot completely vanish due
to labels, we introduce the regularity condition for maximal LDAGs.

Definition

Regular maximal LDAG
A maximal LDAG GL = (V ,E ,LE ) is regular if L(i ,j) is a strict
subset of XL(i ,j)

for every label in GL.
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Satisfied Label

We need to formulate the notion of separation for LDAGs. A
couple of new definitions are needed.

Definition

Satisfied label
Let GL = (V ,E ,LE ) be an LDAG and XC = xC a context where
C ⊆ V . In the context XC = xC , a label L(i ,j) ∈ LE is satisfied if
L(i ,j) ∩ C 6= ∅ and {xL(i ,j)∩C} × XL(i ,j)\C

⊆ L(i ,j).
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Context-specific LDAG

A context-specific LDAG is a reduced version of an LDAG where
all satisfied edges are removed.

Definition

Let GL = (V ,E ,LE ) be an LDAG. For the context XC = xC ,
where C ⊆ V , the context-specific LDAG is denoted by
GL(xC ) = (V ,E \ E ′,LE\E ′) where
E ′ = {(i , j) ∈ E : L(i ,j) is satisfied}. The underlying DAG of the
context-specific LDAG is denoted by G (xC ) = (V ,E \ E ′).
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CSI-separation

CSI-separation can now be defined.

Definition

CSI-separation in LDAGs
Let GL = (V ,E ,LE ) be an LDAG and let A,B ,S ,C be four
disjoint subsets of V . XA is CSI-separated from XB by XS in the
context XC = xC in GL, denoted by

XA ⊥ XB ||GL
xC ,XS ,

if XA is d-separated from XB by XS∪C in G (xC ).

If C = ∅ in the above definition, the method describes the
procedure of d-separation with respect to the underlying DAG.
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LDAGs with CI inducing CSI-structures

When only considering the underlying DAG, it appears (Bayes ball)
that

X2 6⊥ X4 ||G X1,X3 ⇒ X2 6⊥ X4 | X1,X3
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LDAGs with CI inducing CSI-structures

However, through CSI-separation and reasoning by cases we recover

X2 ⊥ X4 ||GL
X1,X3 = 0 ⇒ X2 ⊥ X4 | X1,X3 = 0

X2 ⊥ X4 ||GL
X1,X3 = 1 ⇒ X2 ⊥ X4 | X1,X3 = 1

which eventually leads us to the conclusion that

X2 ⊥ X4 | X1, x3 ∀x3 ∈ X3 ⇔ X2 ⊥ X4 | X1,X3.
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d-separation is based on the notion of active trails, i.e. trails along
which information can flow from one variable to another, and a
lack of such trails will imply d-separation. Labels in an LDAG have
the ability to cut off an active trail for a certain context by
removing an edge in it and render the trail non-active or blocked in
that context. The regularity condition prohibits this from occurring
throughout the outcome space for a single edge but certain
combinations of labels can still deactivate a trail that appears
active when only considering the underlying DAG.
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CSI-separation

When considering the underlying DAG alone, it appears that

X2 6⊥ X4 ||G ∅⇒ X2 6⊥ X4.
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CSI-separation

However, we can recover the following CSIs through
CSI-separation:

X2 ⊥ X4 ||GL
X3 = 0

X2 ⊥ X4 ||GL
X3 = 1

}

⇒ X2 ⊥ X4 | X3

X2 ⊥ X3 ||G ∅ ⇒ X2 ⊥ X3

The first of the CIs must be discovered through reasoning by cases.
The second is easily discovered from the underlying DAG.
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CSI-separation

Combining the CIs leads us (c.f., graphoid axioms) to the
conclusion that

X2 ⊥ X4

indeed holds due to the structural properties of the LDAG. Several
CSI-separation statements work together in order to achieve a
non-local independence that is not easily discovered. However,
both these situations are special cases that can only arise when the
complete outcome space of a subset of variables is split up over
several labels.
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CSI-separation

CSI-separation is proven to be a sound method for verifying CSIs,
i.e.

XA ⊥ XB ||GL
xC ,XS ⇒ XA ⊥ XB | xC ,XS .

Unfortunately, it is not complete in the sense that there may arise
situations where certain structure induced independencies cannot
be discovered directly by the CSI-separation algorithm.
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Equivalence

We can restrict the model space to the subclass of regular maximal
LDAGs without loss of generality. There still exist large classes of
distinct LDAGs that encode equivalent dependence structures.
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Markov Model

A distribution that has all the conditional independence statements
corresponding to the entire set of d -separation statements for a
DAG G is said to belong to the Markov model of G. This is, of
course, a dependency model as outlined above.
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Markov Model

Definition (Markov Model)

Let V = {X1, . . . ,Xd} denote a set of variables and let
G = (V ,D) be a directed acyclic graph. Let V denote the entire
set of subsets of V . Let p be a probability function for the random
vector X = (X1, . . . ,Xd ). Let

I(p) = {(X ,Y ,S) ∈ V × V × V|X ,Y 6∈ S , X ⊥ Y |S}. (3)

Note that φ ∈ V and X ⊥ Y |φ means that X ⊥ Y .
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Markov Model

The Markov ModelMG determined by a directed acyclic graph
G = (V ,E ) is the set of conditional independence statements

MG = {(X ,Y ,S) ∈ V × V × V|X ⊥ Y ‖GS}. (4)

That is, the Markov model is the set of conditional independence
relations satisfied by all distributions that are locally G-Markovian.
A distribution p is said to belong to the Markov Model of G,
written p ∈ MG , if and only ifMG ⊆ I(p).
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I -map

The collection of triplesMG defined in equation (4) represents the
entire set of conditional independence statements that it is possible
to infer from the DAG, but this collection does not necessarily
represent the complete set of independence statements that hold
for a collection of variables under a given probability distribution.
When it does, it is known as a perfect I -map.
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Perfect I -map

(Perfect I -Map, Faithful)

A DAG G = (V ,E ) over a set of variables V is known as a perfect
I -map for a probability function p over V if for any three disjoint
subsets of variables A, B and S,

XA ⊥ XB |XS ⇔ XA ⊥ XB ‖G XS ,

If G is a perfect I -map for p, then G is said to be faithful to p.
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An Aside on Faithfulness

Let Y1,Y2,Y3 be three independent identically distributed binary
variables, with probability function p(0) = p(1) = 1

2
. Let

X1 =

{

1 Y2 = Y3

0 Y2 6= Y3

X2 =

{

1 Y1 = Y3

0 Y1 6= Y3

X3 =

{

1 Y1 = Y2

0 Y1 6= Y2
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An Aside on Faithfulness

Then X1,X2,X3 are pairwise independent, but not jointly independent.

pX1,X2,X3
(1, 1, 1) = p(Y1 = Y2 = Y3) = pY1,Y2,Y3

(1, 1, 1)+pY1,Y2,Y3
(0, 0, 0) =

1

4

pX1,X2,X3
(1, 1, 0) = pX1,X2,X3

(1, 0, 1) = pX1,X2,X3
(0, 1, 1) = p(Y2 = Y3 = Y1,Y1 6= Y2)

pX1,X2,X3
(1, 0, 0) = pX1,X2,X3

(0, 1, 0) = pX1,X2,X3
(0, 0, 1)

= p(Y2 = Y3,Y1 6= Y3,Y1 6= Y2)

= p(Y1 = 1,Y2 = Y3 = 0) + p(Y1 = 0,Y2 = Y3 = 1) =
1

4

pX1,X2,X3
(0, 0, 0) = 0
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An Aside on Faithfulness

It follows that

pX1,X2
(1, 1) = pX1,X2

(1, 0) = pX1,X2
(0, 1) = pX1,X2

(0, 0) =
1

4

so that pX1
(1) = pX1

(0) = 1
2 and in all cases

pX1,X2
= pX1

pX2
.

But
1

4
= pX1,X2,X3

(1, 1, 1) 6= pX1
(1)pX2

(1)pX3
(1) =

1

8
.
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An Aside on Faithfulness

Since X1 ⊥ X2 but X3 6⊥ {X1,X2}, X3 6⊥ X1|X2 and X3 6⊥ X2|X1,
it follows that the factorisation obtained for the distribution
pX1,X2,X3

is
pX1,X2,X3

= pX1
pX2

pX3|X1,X2
.

In the corresponding DAG, X1 6⊥ X3‖Gφ and X2 6⊥ X3‖Gφ, even
though the independence statements hold.
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An Aside on Faithfulness

By considering other orderings of the variables, the other possible
factorisations are

pX1,X2,X3
= pX1

pX3
pX2|X1,X3

= pX2
pX3

pX1|X2,X3
;

in none of the cases do the d -separation statements of the DAG
represent all the conditional independence statements of the
distribution.
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Markov Equivalence

GFED@ABCX1
// GFED@ABCX2

// GFED@ABCX3
GFED@ABCX2

}}||
||

||
||

|

!!B
BB

BB
BB

BB
GFED@ABCX3

// GFED@ABCX2
// GFED@ABCX1

GFED@ABCX1
GFED@ABCX3

X1 ⊥ X3|X2
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I -sub-map, I -map, I -equivalence, Markov Equivalence

Let G1 and G2 be two DAGs over the same variables. The DAG G1
is said to be an I -sub-map of G2 if any pair of variables d -separated
by a set in G1 are also d -separated by the same set in G2. That is,
the set of d -separation statements for G1 is a subset of the set of
d -separation statements for G2. They are said to be I -equivalent if
G1 is an I -sub-map of G2 and G2 is an I -sub-map of G1.
I -equivalence is also known as Markov equivalence.
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Markov Equivalence

Theorem

Two DAGs are Markov equivalent if and only if they have the same
skeleton and the same immoralities.

Andersson, S.A and Madigan, D. and Perlman, M.D. : A
characterization of Markov equivalence classes for acyclic
digraphs,The Annals of Statistics, 25, 505−541.
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Markov Equivalence

Definition (Immorality)

Let G = (V ,E ) be a DAG. An immorality in a graph is a triple of
nodes (α, β,γ) such that (α, β) ∈ E and (γ, β) ∈ E , but
(α,γ) 6∈ E , (γ, α) 6∈ E .
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Markov Equivalance

Each Markov-equivalence class is uniquely determined by a single
PDAG (partial DAG=a chain graph), simultaneously equivalent to
each graph in the class, hence the learning of structure should be
based on these representatives. The question is, how to construct
them.
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Essential Graph

Definition

Let G be a Directed Acyclic Graph. The essential graph G∗

associated with G is the graph with the same skeleton as G, but
where an edge is directed in G∗ if and only if it occurs as a
directed edge with the same orientation in every DAG that is
Markov equivalent to G. The directed edges of G∗ are the essential
edges of G.
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I(P)

Let P denote a distribution over the same set of variables as an
LDAG GL and let I(P) denote the set of CSIs satisfied by P . If P
factorizes according to GL, it must hold that
Iloc(GL) ⊆ I(GL) ⊆ I(P) and GL is called a CSI-map of P .
There may, however, exist distribution-specific independences that
hold in P even when they are not represented by the structure of
GL. A distribution P is said to be faithful to GL if equality
I(GL) = I(P) holds. The LDAG is then called a perfect CSI-map
of P and can be considered a true representation in the sense that
no artificial dependences are introduced.
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Equivalence

As for DAGs, the difference between two equivalent LDAGs can
occur from reversing non-essential edges. It is worth noting that
the criteria for an edge being essential will differ from DAGs. This
observation is based on the fact that the direction of the edges
determines which local CSIs may be included in an LDAG.
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CSI-Equivalence

Definition

CSI-equivalence for LDAGs
Let GL = (V ,E ,LE ) and G ∗L = (V ,E ∗,L∗E ) be two distinct
regular maximal LDAGs. The LDAGs are said to be CSI-equivalent
if I(GL) = I(G

∗
L ). A set containing all CSI-equivalent LDAGs

forms a CSI-equivalence class.
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Equivalence

We will discuss some structural properties that two distinct LDAGs
must fulfill to belong to the same CSI-equivalence class. We begin
by considering the underlying DAG.

Theorem

Let GL = (V ,E ,LE ) and G ∗L = (V ,E ∗,L∗E ) be two regular
maximal LDAGs belonging to the same CSI-equivalence class.
Their underlying DAGs G = (V ,E ) and G ∗ = (V ,E ∗) must then
have the same skeleton.
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Equivalence

Next we introduce a criterion that ties together the concept of
CSI-equivalence among LDAGs and the concept of Markov
equivalence among DAGs.

Theorem

Let GL = (V ,E ,LE ) and G ∗L = (V ,E ∗,L∗E ) be two maximal
regular LDAGs for which there exists distributions P and P∗ such
that I(GL) = I(P) and I(G

∗
L ) = I(P

∗). GL and G ∗L are
CSI-equivalent if and only if their corresponding context-specific
LDAGs GL(xV ) = G (xV ) and G ∗L (xV ) = G ∗(xV ) are Markov
equivalent for all xV ∈ XV .
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Bayesian learning of LDAGs

Learning the LDAG structure from a set of data poses some
obvious problems due to the extremely vast model space as well as
some additional not so obvious problems due to the flexibility of
the models. We introduce a structural learning method that
utilizes a non-reversible Markov Chain Monte Carlo (MCMC)
method combined with greedy hill climbing. Such a combination of
a stochastic and a deterministic algorithm provides solid
performance with a reasonable time complexity.

TK ML Summer School in Reykjavik, 2014



Learning

A Bayesian score is used to evaluate the appropriateness of an
LDAG given a set of observed data. In order to prevent overfitting,
we impose a prior distribution that allows us to balance the ability
of an LDAG to match the available learning data with its
complexity.
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Learning

We begin with some additional notations.
Let X = {xi}ni=1 denote a set of training data consisting of n
observations xi = (xi1, . . . xid) of the variables {X1, . . . ,Xd} such
that xi ∈ X . We assume that X is complete in the sense that it
contains no missing values. We denote an LDAG by GL and GL
denotes the set of all regular maximal LDAGs. We let ΘGL

denote
the parameter space induced by an LDAG and dim(ΘGL

) denotes
the number of free parameters spanning the parameter space.
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Learning

An instance θ ∈ ΘGL
corresponds to a specific joint distribution

that factorizes according to the LDAG GL. The CSI-consistent
partition of the outcome space XΠj

is denoted by
SΠj

= {Sj1, . . . ,Sjkj } where kj = |SΠj
| is the number of outcome

classes. We let rj = |Xj | and qj = |XΠj
| denote the cardinality of

the outcome space of variable Xj and its parents XΠj
, respectively.

Finally, we use n(xij × Sjl ) to denote the total count of the
configurations {xij} × Sjl in X.
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Learning

p(X | GL) is the marginal probability of observing the data X

(evidence) given a specific LDAG GL and p(GL) denotes the prior
probability of the LDAG.

arg max
GL∈GL

p(X | GL) · p(GL). (5)
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Marginal Data Distribution

The first issue is to compute the marginal data distribution

P (X | G)

taking into account the equivalence classes. The solution due to

M. Frydenberg: The Chain Graph Markov Property. Scand. J.
Stat., 17, 333−5353, 1990.

S.A.Andersson, D. Madigan & M.D. Perlman: A
Characterization of Markov Equivalence Classes for Acyclic
Digraphs. The Annals of Statistics, 25, 505−541, 1997
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Learning

To evaluate p(X | GL), we need to consider all possible instances
of the parameter vector satisfying the independencies encoded by
the LDAG and weight them with respect to a prior according to

p(X | GL) =
∫

θ∈ΘGL

p(X | GL, θ) · f (θ | GL)dθ, (6)

where p(X | GL, θ) and f (θ | GL) are the respective likelihood
function and prior distribution over the parameters, given the
graph GL.
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Learning

p(X | GL) =
d

∏
j=1

kj

∏
l=1

Γ
(

∑
rj
i=1 αijl

)

Γ
(

n(Sjl) + ∑
rj
i=1 αijl

)

rj

∏
i=1

Γ (n(xji × Sjl) + αijl )

Γ (αijl )
,

(7)
where n(·) is the count defined earlier and the αijl :s are
hyperparameters (also known as pseudocounts) defining a
collection of local Dirichlet distributions. The hyperparameters
characterize our prior belief about the CPDs and must be
established to evaluate.
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Appendix: Dirichlet

A Dirichlet distribution on the set

{θ = (θi )
d
i=1 | θi ≥ 0,

d

∑
i=1

θi = 1}

is defined by the probability density

p (θ) =
Γ(∑d

i=1 αi )

∏
d
i=1 Γ(αi )

d

∏
i=1

θαi−1
i

where αi ≥ 0 is a hyperparameter and Γ(z) is the Euler gamma
function.

TK ML Summer School in Reykjavik, 2014



Learning: Prior

αijl =
N

rj · qj
· |Sjl |, (8)

where qj is with respect to the underlying DAG and |Sjl | denotes
the number of configurations in that specific part. This is based on
the thinking around Perks prior.

W. Perks: Some observations on inverse probability including
a new indifference rule,Journal of the Institute of Actuaries,
pp. 285−334, 1947.
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Learning

The remaining issue at this point is to define the prior distribution
over the set of LDAGs. This part is generally not given too much
attention in Bayesian model learning but for LDAGs it plays a vital
role.

p(GL) ∝ κdim(ΘGL
) =

d

∏
j=1

κdim(ΘGL
(j)) (9)

where κ ∈ (0, 1].
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Learning

The choice of model prior turns out to be an essential part of the
Bayesian scoring function for LDAGs. We demonstrate below that
the marginal likelihood alone has a tendency to overfit the
dependence structure for limited sample sizes by favoring dense
graphs with complex labelings. The number of free parameters
associated with such a LDAG is low compared to the number of
free parameters associated with its underlying DAG and the LDAG
is said to have a high CSI-complexity.
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Learning

The overfitting effect is thus reflected through a high
CSI-complexity rather than an excessive number of free parameters.
Although high CSI-complexity models may lead to high marginal
likelihoods, they are more prone to contain false dependencies and
thereby fail to capture the true global dependence structure. This
has a direct negative effect on their out-of-sample predictive
performance. Another drawback is that their high density will yield
bulky CPDs. This basically counteracts the fundamental idea of
modularity on which the concept of graphical models is based.
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Learning

The overfitting phenomenon vanishes asymptotically when n→ ∞,
since maximization of the marginal likelihood leads to a consistent
estimator of the model structure. Consequently, we construct our
prior such that it acts as a regularizer for smaller sample sizes and
its effect will gradually vanish as the sample size is increased,

p(GL) ∝ κdim(ΘG )−dim(ΘGL
) =

d

∏
j=1

κdim(ΘG (j))−dim(ΘGL(j)
), (10)

where dim(ΘGL
) and dim(ΘG ) are the number of free parameters

associated with the LDAG and its underlying DAG, respectively.
The parameter κ ∈ (0, 1] can be considered a measure of how
strongly a CSI inducing label configuration must be supported by
the data in order for it to be included in the model.
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Learning

For small values on κ, addition of a label configuration increases
the score only if its associated CSI is firmly supported by the data
while κ = 1 corresponds to a uniform prior.
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Learning

For this purpose we introduce a search algorithm which utilizes a
non-reversible MCMC method, combined with a direct form of
optimization. The general idea is that the stochastic part of the
algorithm jumps between neighbouring underlying DAGs, whose
CSI structures are optimized by adding labels in a greedy hill
climbing -manner. As our score decomposes variable-wise, instead
of considering the whole DAG, we can optimize the local structure
of one variable at a time.
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Procedure for optimizing the local CSI structure for Xj

Xj , //Variable whose local structure is optimized
XΠj

, //Parental variables
X, //A set of complete data over XΠj∪{j}

)
1: Lj = {L(i ,j)}i∈Πj

← ∅

2: keepClimb ← True
3: while keepClimb
4: Ltop

j ← Lj

5: for xL(i ,j) /∈ Lj : {xL(i ,j) ∪ L(i ,j)} ⊂ XL(i ,j)

6: Lcand
j ← Lj ∪ xL(i ,j)

7: if p(Xj | XΠj
,Lcand

j ) > p(Xj | XΠj
,Ltop

j )

8: Ltop
j ← Lcand

j

9: end

10: end
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Learning

We utilize a non-reversible version which has been shown to
possess several advantageous properties. Let q(·|GL) denote a
generic proposal distribution over the model space GoptL , given GL

for all GL ∈ G
opt
L . We let GL(t) denote the state of the chain at

iteration t. At iteration t = 1, 2, . . . of the non-reversible chain,
q(·|GL(t)) is used to generate the next candidate state G ∗L which
is then accepted with probability

min

(

1,
p(G ∗L )p(X|G

∗
L )

p(GL(t))p(X|GL(t))

)

.

If G ∗L is accepted, we set GL(t + 1) = G ∗L and otherwise
GL(t + 1) = GL(t).
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Learning

The proposal probabilities need not to be explicitly calculated or
even known as long as they remain unchanged over the iterations
and the resulting chain is irreducible. The stationary distribution of
such a chain does no longer follow the posterior distribution.
However, our main objective is to identify only the maximum a
posteriori model (5).

TK ML Summer School in Reykjavik, 2014



Non-reversible MCMC

The algorithm is based on m parallell Markov chains,
j = 1, 2, . . . ,m The chains draw at independent random times a
value from P (Gj | X). This forces the chains to move to regions
of maximal posterior probability.
Define the sequence of probabilities {αt , t = 2, 3, ...} according to

αt =
1

q log t
,

where q ≥ 1 can be chosen suitably, for instance q ∈ [5, 10].
Z0 = 0, and P(Zt = 1) = αt ,P(Zt = 0) = 1− αt , independently
for t = 1, 2, ... .
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The Parallel Search

Find
maxP (Gtj | X)

over the space of the current states {Gt1,Gt2, ...,Gtm}. For each
t = 0, 1, ... such that Zt = 1, the transition to the next state is
determined according to this distribution, such that the next state
for each chain is sampled to the non-reversible proposal-acceptance
formulae, independently for j = 1, ...,m.
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The Parallel Search

For each t, such that Zt = 0, transition to the next state G(t+1)j is
determined according to the non-reversible proposal-acceptance
formulae above independently for j = 1, ...,m.
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Learning

The approximate solution proposed by a search chain at iteration t
is simply the one with the highest score visited thus far. Satisfying
the conditions mentioned, the proposal distributions are defined as
uniform distributions over the globally adjacent LDAGs that can be
reached by adding, reversing or removing a single edge under the
restriction that the resulting LDAG is acyclic.
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Learning

As the difference between two successive graphs may only differ for
a single edge, at most two local structures are modified at each
step of the chain. Since our score p(X,GL) decomposes
variable-wise, only the modified local structures must be
re-evaluated as the score for the rest of the variables remains
unchanged. This idea can be further exploited when optimizing the
local CSI-structures. At each step of the optimization procedure,
we need only to re-evaluate the score with respect to the parts of
the partition that are modified. For our algorithm in particular, only
a single new factor is created for each added label configuration.
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Learning

Adding of labels yields a flexibility that facilitates the identification
of ”weaker” edges that might be deemed non-existing in the model
space of DAGs. However, optimization of the CSI-structure cannot
make up for unrealistic global independence assumptions made by
an inferior underlying DAG structure. Hence, a prerequisite for
learning a good LDAG structure is that it is based on a sensible
underlying DAG. Getting stuck at regions with inferior underlying
DAGs, will have a more severe negative effect on the learned
LDAGs than not finding the optimal CSI-structure. This motivates
the fact that the stochastic part of our method performs global
changes whereas the optimization of the CSI-structures is done in
a deterministic manner.
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Learning κ

For choosing an appropriate value of κ, we propose a
cross-validation scheme. First we partition the data X into a
training set Y and a test set Z. We then apply our search method
on the training data under some prior (or κ) and identify the
optimal model G κ

L . We then evaluate the learned model’s ability to
predict the test data by calculating the posterior predictive
probability of the test data given the training data,

p(Z | Y,G κ
L ) =

∫

θ∈ΘGκ
L

p(Z | G κ
L , θ) · f (θ | Y,G κ

L )dθ. (11)

Note that this applies the notion of conditionally independent and
identically distributed data given the parameters, c.f. the
introductory discussion of Bayesian statistics in the beginning of
these lectures.
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Learning κ

Under similar assumptions made earlier, (11) can be calculated
analytically by

p(Z | Y,G κ
L ) =

d

∏
j=1

kj

∏
l=1

Γ
(

∑
rj
i=1(αijl + nY(xji × Sjl ))

)

Γ
(

nZ(Sjl ) + ∑
rj
i=1(αijl + nY(xji × Sjl ))

) ·

rj

∏
i=1

Γ (nZ(xji × Sjl ) + αijl + nY(xji × Sjl))

Γ (αijl + nY(xji × Sjl ))
,

(12)

where the bold case index indicates to which data set the outcome
count refers.
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Learning κ

To reduce the variability of the method, multiple partitions of X
are created, {(Y1,Z1), (Y2,Z2), . . . , (YM ,ZM)}, and the
validation results are averaged according to

ρpred (κ) =
1

M

M

∑
m=1

log p(Zm | Ym,G
κ,m
L ). (13)

The value on κ is finally chosen among the candidates as the one
that maximizes (13).
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Experimental results with real and simulated data sets

To illustrate the properties of LDAGs, we apply our search
algorithm on both a real and two simulated data sets. First we
consider a real data set that has been thoroughly investigated in
earlier graphical modelling literature. After that we consider
synthetic DAG- and LDAG-based models.
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Experimental results with real and simulated data sets

Our real data set contains 1841 cases composed of six binary risk
factors for coronary heart disease.
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Table: Prognostic factors in coronary heart disease.

X2 yes no
X6 X5 X4 X3 X1 no yes no yes
neg < 3 < 140 no 44 40 112 67

yes 129 145 12 23
> 140 no 35 12 80 33

yes 109 67 7 9
> 3 < 140 no 23 32 70 66

yes 50 80 7 13
> 140 no 24 25 73 57

yes 51 63 7 16
pos < 3 < 140 no 5 7 21 9

yes 9 17 1 4
> 140 no 4 3 11 8

yes 14 17 5 2
> 3 < 140 no 7 3 14 14

yes 9 16 2 3
> 140 no 4 0 13 11

yes 5 14 4 4
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Table: Explanations of the Labels in Table 1

Label Meaning Range
X1 smoking no,yes
X2 strenuous mental work no,yes
X3 strenuous physical work no,yes
X4 systolic blood pressure < 140,> 140
X5 ratio of β and α lipoproteins < 3,> 3
X6 family anamnesis1 of coronary heart disease no,yes

1information concerning a medical patient and his/her background for use
in analysis of her/his condition
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Here we get an indication of how the CSI-complexity increases with
higher values on κ. The bold font indicate which κ was chosen as
optimal by the cross-validation procedure. The LDAG identified for
κ = 0.001 contains no labels and is thereby equal to its underlying
DAG. The improvement, that an added label configuration induces
to the marginal likelihood, is overshadowed by the simultaneous
lowering of the prior probability mass.
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Experimental results with a real data set

Consequently, when κ → 0 the direct optimization will map the set
of DAGs onto itself and the learning procedure is reduced to a
search among ordinary DAGs.

κ log p(X,GL) |E | dim(ΘG ) dim(ΘGL
) ρpred

0.001 -6731.82 5 12 12 -671.30

0.1 -6729.69 6 14 12 -670.88

0.3 -6727.50 6 14 12 -670.51

0.5 -6724.68 7 18 11 -670.89

Table: Properties of identified LDAGs for coronary heart disease data.
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Experimental results with a real data set
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Experimental results with a real data set

We now consider synthetic models from which data are generated
to systematically compare models identified for different prior
distributions and sample sizes. Since we know the generating
model, we investigate how well the identified models approximate
the true distribution. The CPDs of the models are estimated by the
consistent mean a posteriori estimator as the expected value of the
local posterior Dirichlet distributions. To compare the distributions,
we utilize the concept of Kullback-Leibler (KL) divergence.

DKL(p ‖ p
∗) = ∑

x∈X

p(x) log
p(x)

p∗(x)
.

TK ML Summer School in Reykjavik, 2014



DAG and labels according to which the synthetic data sets
were generated
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DAG and labels according to which the synthetic data sets
were generated

L3 : L(2,3) = {0}

L4 : L(1,4) = {1}

L5 : L(4,5) = {(0, ∗)}

L(8,5) = {(0, ∗)}

L7 : L(2,7) = {(1, 1, 0)}

L(3,7) = {(0, 1, 1), (1, ∗, 1)}

L(4,7) = {(1, 1, ∗)}

L(6,7) = {(1, 1, ∗)}
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More labels

L9 : L(5,9) = {1}

L10 : L(7,10) = {(1, ∗, ∗)}

L(8,10) = {(1, ∗, ∗)}

L(9,10) = {(1, ∗, ∗)}
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Experimental results with simulated data sets

As expected, the model distributions approach the true distribution
when the sample size increases. This results in a steady
improvement of the KL divergence as illustrated in Figure ??. The
decrease is evident for all values on κ but our results indicate that
different prior distributions are to be preferred depending on the
sample size. It also clear how the quality of most of the models
begin to suffer under κ = 0.5 as a result of overfitting.
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KL divergence for different sample sizes under different
priors
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Comments:DAG-based generating model

All models identified under κ = 0.001 are without labels since
dim(ΘG )− dim(ΘGL

) = 0. We can thus use this prior as a
reference point for investigating how well LDAGs perform
compared to traditional DAGs.
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Comments:LDAG-based generating model
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Comparison of DAGs and LDAGs for different sample sizes.

The difference in KL divergence between the true distribution and
the approximate distributions induced by the models. The DAG
curve in the figure corresponds to the 0.001-curve from Figure ??

and the LDAG curve corresponds to the thick black curve where
the models where chosen by the initial cross-validation method.
Note that the method in some cases picks the 0.001-prior which
results in a converging of the curves. We see that the LDAGs
mostly outperform traditional DAGs by inducing distributions that
better approximate the true distribution.
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Thank you !
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