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Pseudo-Marginal Bayesian Inference for Gaussian Processes

I Challenge to carry out exact Bayesian inference and how to account for
uncertainty on model parameters when making model-based predictions
on out-of-sample data

I Exact Posterior Marginalisation is Hard

I Using probit regression as an illustrative tutorial example, will present
the pseudo-marginal approach to Markov chain Monte Carlo that
efficiently addresses both of these issues.

I This is particularly important as it offers a powerful tool to carry out full
Bayesian inference of Gaussian Process based hierarchic statistical
models in general.

I Empirically indicates Monte Carlo based integration of all model
parameters is actually feasible in this class of models providing a
superior quantification of uncertainty in predictions.

I Extensive comparisons with respect to state-of-the-art probabilistic
classifiers support this assertion.
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Simple Gaussian Process Model

I Let X = {x1, . . . , xn} be a set of n input vectors described by d
covariates and associated with observed univariate responses
y = {y1, . . . , yn} with yi ∈ {−1,+1}

I Let f = {f1, . . . , fn} be a set of latent functions f ∼ N (f|0,K ) with
Kij = k(xi , xj |θ) the function modeling the covariance between latent
variables evaluated at the input vectors, parameterized by a vector of
hyper-parameters θ.

I The data modelled as p(yi |fi ) = Φ(yi fi ) with p(y|f) =
∏n

i=1 p(yi |fi ).

I The GP classification model is hierarchical, as y is conditioned on f, and
f is conditioned on θ and the inputs X .

I Require

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|f,θ)p(f,θ|y)df∗dfdθ.
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Approximate Inference

I Object of interest

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|f,θ)p(f,θ|y)df∗dfdθ.

I Laplace Approximation

I Variational Approximation

I Expectation Propagation

I Maximum Approximate Marginal Likelihood

I Monte Carlo to tackle intractability in characterizing p(f,θ|y)

I Draw samples from p(f,θ|y) using MCMC methods, so that a Monte
Carlo estimate of the predictive distribution can be used

p(y∗|y) ' 1
N

N∑
i=1

∫
p(y∗|f∗)p(f∗|f(i),θ(i))df∗,

where f(i),θ(i) denotes the i th sample from p(f,θ|y).
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MCMC Posterior Sampling from p(f,θ|y)
I Sampling from the posterior over f and θ by joint proposals is not

feasible; it is extremely unlikely to propose a set of latent variables and
hyper-parameters that are compatible with each other and observed
data.

I In order to draw samples from p(f,θ|y), it is therefore necessary to
resort to a Gibbs sampler, whereby f and θ are updated in turn.

I Sampling from p(f|y,θ), Elliptic Slice Sampling, HMC

I Sampling from p(θ|f, y), problematic requiring reparametrisation
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Figure: Comparison of the posterior distribution p(θ|y) with the posterior p(θ|f) in
the SA parameterization, the posterior p(θ|y,ν) in the AA parameterization, and
the parameterization used in the SURR method.
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MCMC Posterior Sampling from p(θ|y)

I The use of reparameterization techniques mitigates the problems due to
the coupling of latent variables and hyper-parameters, but sampling
efficiency for GP models is still an issue

I Intuitively, the best strategy to break the correlation between latent
variables and hyper-parameters in sampling from the posterior over the
hyper-parameters would be to integrate out the latent variables
altogether.

I This is not possible, but here we present a strategy that uses an
unbiased estimate of the marginal likelihood p(y|θ) to devise an MCMC
strategy that produces samples from the correct posterior distribution
p(θ|y).
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MCMC Posterior Sampling from p(θ|y), the Pseudo-Marginal Approach

I We are interested in sampling from the posterior distribution

p(θ|y) ∝ p(y|θ)p(θ).

In order to do that, we would need to integrate out the latent variables:

p(y|θ) =

∫
p(y|f)p(f|θ)df

and use this along with the prior p(θ) in the Hastings ratio:

z =
p(y|θ′)p(θ′)

p(y|θ)p(θ)

π(θ|θ′)
π(θ′|θ)

As already discussed, analytically integrating out f is not possible.

I Resort to approximations and still retain exactness of MCMC
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MCMC Posterior Sampling from p(θ|y), the Pseudo-Marginal Approach

I We could just plug into the Hastings ratio an estimate p̃(y|θ) of the
marginal p(y|θ).

I If the estimate of the margin is unbiased and positive, then the sampler
will draw samples from the correct exact posterior p(θ|y).

z̃ =
p̃(y|θ′)p(θ′)

p̃(y|θ)p(θ)

π(θ|θ′)
π(θ′|θ)

I This result is remarkable as it gives a simple recipe to be used in
hierarchical models to tackle the problem of strong coupling between
groups of variables when using MCMC algorithms.
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Exploiting Approximate Posteriors in the Pseudo-Marginal Approach

I In order to obtain an unbiased estimator p̃(y|θ) for the marginal p(y|θ),
we propose to employ importance sampling.

I We draw Nimp samples fi from the approximating distribution q(f|y,θ), so
that we can approximate the marginal p(y|θ) =

∫
p(y|f)p(f|θ)df by:

p̃(y|θ) ' 1
Nimp

Nimp∑
i=1

p(y|fi )p(fi |θ)

q(fi |y,θ)

I It is easy to verify that the approximation yields an unbiased estimate of
p(y|θ), as its expectation is the exact marginal p(y|θ).

I Therefore, this estimate can be used in the Hastings ratio to construct an
MCMC approach that samples from the correct invariant distribution
p(θ|y).
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Exploiting Approximate Posteriors in the Pseudo-Marginal Approach

Algorithm 1 Pseudo-marginal MH transition operator to sample θ.
Input: The current pair (θ, p̃(y|θ)), a routine to approximate p(f|y,θ) by
q(f|y,θ), and number of importance samples Nimp

Output: A new pair (θ, p̃(y|θ))

1: Draw θ′ from the proposal distribution π(θ′|θ)
2: Approximate p(f|y,θ′) by q(f|y,θ′)
3: Draw Nimp samples from q(f|y,θ′)
4: Compute p̃(y|θ′) using IMPORTANCE SAMPLER

5: Compute A = min
{

1,
p̃(y|θ′)p(θ′)

p̃(y|θ)p(θ)

π(θ|θ′)
π(θ′|θ)

}
6: Draw u from U[0,1]

7: if A > u then
8: return (θ′, p̃(y|θ′))
9: else

10: return (θ, p̃(y|θ))
11: end if
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Figure: Plot of the PM as a function of the length-scale τ ; black solid lines represent
the average over 500 repetitions and dashed lines represent 2.5th and 97.5th quantiles
for Nimp = 1 and Nimp = 64. The solid red line is the prior density.



Sampling Efficiency
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Figure: Summary of efficiency and convergence speed on Breast data set. All plots
show the sampling of the logarithm of the length-scale parameter τ . The right panel
reports the evolution of the PSRF after burn-in; in this plot the solid line and the red
dashed line represent the median and the 97.5% percentile respectively.



Sampling Efficiency

Pima n = 768
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Sampling Efficiency

Abalone n = 2835
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Predictive Performance
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Figure: Plots of performance scores with respect to size of training set for the Pima
(first row) and the Thyroid (second row) data sets. The legend is reported in the first
row only and it applies to all the plots. In the remaining plots, a closeup is reported to
make it easier to compare the results.
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Figure: Plots of performance scores with respect to size of training set for the Glass
(first row) and the USPS (second row) data sets. The legend is reported in the first row
only and it applies to all the plots. In the remaining plots, a closeup is reported to make
it easier to compare the results.



IEEE Trans PAMI



Motivation

I Bayesian inference data y ∈ Y, posterior inference for variables θ ∈ Θ

I Prior π(θ), data density p(y|θ) = f (y;θ)/Z(θ) with Z(θ) =
∫

f (x;θ)dx

I Doubly-Intractable Posterior follows as

π(θ|y) = p(y|θ)× π(θ)× 1
Z(y)

=
f (y;θ)

Z(θ)
× π(θ)× 1

Z(y)

where Z(y) =
∫

p(y|θ)π(θ)dθ

I Bayesian inference proceeds by taking posterior expectations of
functions of interest i.e.

Eπ(θ|y) {ϕ(θ)} =

∫
ϕ(θ)π(θ|y)dθ
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Motivation

I Construct Markov chain whose invariant distribution has density π(θ|y)
via transition kernel constructed by employing q(θ′|θ) and acceptance
probability

α(θ′,θ) = min
{

1,
f (y;θ′)π(θ′)

f (y;θ)π(θ)
× q(θ|θ′)

q(θ′|θ)
× Z(θ)

Z(θ′)

}

I If Z(θ′) is non-analytic or non-computable kernel infeasible

I Biased approximations e.g. pseudo-likelihoods, plugin Ẑ(θ′) estimates

I Do not wish to sacrifice exactness of MCMC (simulation or expectation)
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Motivation

I Directional Statistics and distributions on manifolds

I Machine Learning - Boltzman Machines, Deep Learning

I Diffusion Processes

I Markov Random Fields - Ising, Potts Colouring, Autologistic, Spatial
Point Processes

I Large Scale Gaussian Markov Random Fields

I Statistical Models of Network Connectivity
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Existing Approaches to Solution

I Unbiased plugin estimate Møller et al, 2006 and Murray et al 2006

Z(θ)

Z(θ′)
≈ f (x;θ)

f (x;θ′)
where x ∼ f (x;θ′)

Z(θ′)

I Major methodological step forward in addressing Doubly-Intractable
problem

I Require to simulate from model - exploit Perfect Sampling where
possible
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Exact Approximate Methods

I Pseudo-Marginal construction -

Simply a miraculous result

I Beaumont (2003); Andrieu and Roberts (2009); Doucet et al (2012)

I Obtain unbiased, positive estimate of target posterior and use in
acceptance expression

α(θ′,θ) = min
{

1,
π̂(θ′|y)

π̂(θ|y)
× q(θ|θ′)

q(θ′|θ)

}

I Transition kernel has invariant distribution with target density π(θ|y)

I Historical Note - Pseudo-Marginal Result exploited in Bosonic Gauge
Theory literature almost 30 years ago e.g. Bhanot and Kennedy (1985) -
predating Beaumont (2003)
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Exact Approximate Methods

I Consequence of Monte Carlo error appearing in estimate of target

I Represent Monte Carlo error with r.v. ξ ∼ Pθ and π̂(θ|y) = π(θ, ξ|y)
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Infinite Series Expansion Construction

I For each θ and y , construct random variable {V (j)
θ , j ≥ 0} such that

π̂(θ, {V (j)
θ }|y) :=

∞∑
j=0

V (j)
θ

is finite almost surely, having finite expectation where

E
(
π̂(θ, {V (j)

θ } |y)
)

= π(θ|y)

I Introduce a random time τθ, such that with ξ := (τθ, {V (j)
θ , 0 ≤ j ≤ τθ})

the estimate

π̂(θ, ξ|y) :=

τθ∑
j=0

V (j)
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satisfies

E
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Targeting Absolute Measure

I Unbiased estimate π̂(θ, ξ|y) using series construction no general
guarantee of positivity

I Well studied problem in Solid State and QCD literature with conference
devoted to Sign Problem

I Own feeble attempts at resolving Sign problem unsuccessful ...... to date

I Inspiration from QCD literature, exploit result in Lin, Lui, Sloan, (2000)

I Despite sign problem

I Retain exactness of Monte Carlo estimates of expectations w.r.t. π(θ|y)

I Details in paper
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Targeting Absolute Measure

I W.L.O.G, write

π̂(θ, ξ|y) =
1

Z (y)
p̂(θ, ξ|y)

where Z (y) is some intractable normalizing constant.

I By unbiasedness of π̂(θ, ξ|y), Z (y) =
∫ ∫

p̂(θ, ξ|y)Pθ(dξ)dθ

I Although measure π̂(θ, ξ|y) integrates to 1, it is not a probability
measure because of the positivity issue.

I Write
p̂(θ, ξ|y) = σ(θ, ξ|y)|p̂(θ, ξ|y)|

I Require to obtain expectation∫
h(θ)π(θ|y)dθ
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Targeting Absolute Measure

I We can write integral as∫
h(θ)π(θ|y)dθ =

∫ ∫
h(θ)π̂(θ, ξ|y)Pθ(dξ)dθ

=

∫ ∫
h(θ)σ(θ, ξ|y)π̌(dθ, dξ|y)∫ ∫
σ(θ, ξ|y)π̌(dθ, dξ|y)

I where π̌(dθ, dξ|y) is the distribution

π̌(dθ, dξ|y) :=
|p̂(θ, ξ|y)|dθPθ(dξ)∫ ∫
|p̂(θ, ξ|y)|dθPθ(dξ)

.

I Exact-approximate MH algorithm with target π̌(dθ, dξ|y) and proposal
Q(θ, ξ; dθ′, dξ′) = q(θ′|θ)dθ′Pθ′(dξ′) has acceptance probability given
by

min
{

1,
|p̂(θ, ξ|y)|
|p̂(θ, ξ|y)|

× q(θ|θ′)
q(θ′|θ)

}
.



Targeting Absolute Measure

I We can write integral as∫
h(θ)π(θ|y)dθ =

∫ ∫
h(θ)π̂(θ, ξ|y)Pθ(dξ)dθ

=

∫ ∫
h(θ)σ(θ, ξ|y)π̌(dθ, dξ|y)∫ ∫
σ(θ, ξ|y)π̌(dθ, dξ|y)

I where π̌(dθ, dξ|y) is the distribution

π̌(dθ, dξ|y) :=
|p̂(θ, ξ|y)|dθPθ(dξ)∫ ∫
|p̂(θ, ξ|y)|dθPθ(dξ)

.

I Exact-approximate MH algorithm with target π̌(dθ, dξ|y) and proposal
Q(θ, ξ; dθ′, dξ′) = q(θ′|θ)dθ′Pθ′(dξ′) has acceptance probability given
by

min
{

1,
|p̂(θ, ξ|y)|
|p̂(θ, ξ|y)|

× q(θ|θ′)
q(θ′|θ)

}
.



Targeting Absolute Measure

I We can write integral as∫
h(θ)π(θ|y)dθ =

∫ ∫
h(θ)π̂(θ, ξ|y)Pθ(dξ)dθ

=

∫ ∫
h(θ)σ(θ, ξ|y)π̌(dθ, dξ|y)∫ ∫
σ(θ, ξ|y)π̌(dθ, dξ|y)

I where π̌(dθ, dξ|y) is the distribution

π̌(dθ, dξ|y) :=
|p̂(θ, ξ|y)|dθPθ(dξ)∫ ∫
|p̂(θ, ξ|y)|dθPθ(dξ)

.

I Exact-approximate MH algorithm with target π̌(dθ, dξ|y) and proposal
Q(θ, ξ; dθ′, dξ′) = q(θ′|θ)dθ′Pθ′(dξ′) has acceptance probability given
by

min
{

1,
|p̂(θ, ξ|y)|
|p̂(θ, ξ|y)|

× q(θ|θ′)
q(θ′|θ)

}
.



Targeting Absolute Measure

I We can write integral as∫
h(θ)π(θ|y)dθ =

∫ ∫
h(θ)π̂(θ, ξ|y)Pθ(dξ)dθ

=

∫ ∫
h(θ)σ(θ, ξ|y)π̌(dθ, dξ|y)∫ ∫
σ(θ, ξ|y)π̌(dθ, dξ|y)

I where π̌(dθ, dξ|y) is the distribution

π̌(dθ, dξ|y) :=
|p̂(θ, ξ|y)|dθPθ(dξ)∫ ∫
|p̂(θ, ξ|y)|dθPθ(dξ)

.

I Exact-approximate MH algorithm with target π̌(dθ, dξ|y) and proposal
Q(θ, ξ; dθ′, dξ′) = q(θ′|θ)dθ′Pθ′(dξ′) has acceptance probability given
by

min
{

1,
|p̂(θ, ξ|y)|
|p̂(θ, ξ|y)|

× q(θ|θ′)
q(θ′|θ)

}
.



Targeting Absolute Measure

I Estimate

I =

∫
h(x)π(x)dx∫
π(x)dx

,

using

În =

∑n
k=1 σ(Xk )h(Xk )∑n

k=1 σ(Xk )
.

I If {Xn, n ≥ 0} is irreducible & aperiodic, În → I a.s. as n→∞.
I Approximation of the Monte Carlo variance of În is given by

1
n
×

{∑n
k=1 h2(Xk )σ(Xk )∑n

k=1 σ(Xk )
−
(∑n

k=1 h(Xk )σ(Xk )∑n
k=1 σ(Xk )

)2
}
× V̂{ 1

n

∑n
k=1 σ(Xk )

}2 ,

where V̂ is an estimate of the common autocorrelation sum.
I Quantity

∑n
k=1 σ(Xk ) indicates severity of sign problem, the smaller the

harder it is to estimate I accurately.
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În =

∑n
k=1 σ(Xk )h(Xk )∑n

k=1 σ(Xk )
.

I If {Xn, n ≥ 0} is irreducible & aperiodic, În → I a.s. as n→∞.
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Unbiased Estimators via Geometric Tilting

I The approximation p̃(y|θ) = f (y;θ)/Z̃(θ), where Z̃(θ) is an estimate,
approximation, an upper-bound, or a deterministic approximation

I A multiplicative correction can take form of an infinite expansion such as

p(y|θ) = p̃(y|θ)× c(θ)

[
1 +

∞∑
n=1

κ(θ)n

]

I Note that if κ(θ) = 1− c(θ)Z(θ)/Z̃(θ)then for a choice of the constant
c(θ) that ensures the region of convergence of a geometric series i.e.
|κ(θ)| < 1, by convergence of a geometric series it follows trivially that

p(y|θ) = p̃(y|θ)× c(θ)

[
1 +

∞∑
n=1

κ(θ)n

]
= p̃(y|θ)× c(θ)

1− κ(θ)
= p(y|θ)

I An infinite independent number of unbiased estimates of Z(θ) each
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Unbiased Estimators via Geometric Tilting

I Notice that the series is finite almost surely and has finite expectation if

E

(∣∣∣∣∣1− c(θ)
Ẑi (θ)

Z̃(θ)

∣∣∣∣∣
)
< 1

I As E(|X |) ≤ E1/2(|X |2), sufficient that c(θ) < 2Z̃(θ)Ẑ(θ)/E
(
Ẑ2

1 (θ)
)

I Under this assumption expectation of p̂(y|θ) can be computed as

E {p̂(y|θ)} = p̃(y|θ)× c(θ)

1 +
∞∑

n=1

n∏
i=1

1− c(θ)
E
{
Ẑi (θ)

}
Z̃(θ)


= p̃(y|θ)× c(θ)

[
1 +

∞∑
n=1

κ(θ)n

]
= p(y|θ)

I Therefore essential property, E {p̂(y|θ)} = p(y|θ), required of a plugin
estimator for exact-approximate MCMC is satisfied
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Unbiased Estimators via Exponential Tilting

I Introduction auxiliary variable ν ∼ Expon(Z(θ)) defines joint distribution

π(θ, ν|y) = Z(θ) exp(−νZ(θ))× f (y;θ)× 1
Z(θ)

× π(θ)× 1
Z(y)

= exp (−νZ(θ))× f (y;θ)× π(θ)× 1
Z(y)

I Exact-approximate scheme constructed by estimating exp (−νZ(θ))

I The MacLaurin series expansion is

exp(−νZ(θ)) = 1 +
∞∑

n=1

(−ν)n

n!
Z(θ)n

I Suggesting an unbiased estimator of the form

̂exp(−νZ(θ)) = 1 +
∞∑

n=1

(−ν)n

n!

n∏
i=1

Ẑi (θ),

I n! grows faster than exponential, series finite a.s. with finite expectation
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Unbiased Estimators via Exponential Tilting

I An approximate Z̃(θ) can be exploited such that

exp(−νZ(θ)) = exp(−νZ̃(θ))× exp
(
ν(Z̃(θ)−Z(θ))

)
= exp(−νZ̃(θ))×

(
1 +

∞∑
n=1

νn

n!

(
Z̃(θ)−Z(θ)

)n
)

I Yields a tilted estimator of the form

̂exp(−νZ(θ)) = exp(−νZ̃(θ))×

(
1 +

∞∑
n=1

νn

n!

n∏
i=1

(
Z̃(θ)− Ẑi (θ)

))

I Approximation exp(−νZ̃(θ)) corrected by exponential tilt
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Russian Roulette

I Require unbiased truncation of infinite sum S(θ) =
∑∞

i=0 φi (θ)

I Poisson truncation and Generalised Poisson truncation (infinite variance
for Geometric series)

I Russian Roulette employed extensively in simulation of neutron
scattering and computer graphics

I Assign probabilities {qj , j ≥ 1} qj ∈ (0, 1] and U(0, 1) i.i.d. r.v’s
{Uj , j ≥ 1}

I Find the first time k ≥ 1 such that Uk ≥ qk

I Russian Roulette estimate of S(θ) is

Ŝ(θ) =
k∑

j=0

φj (θ)∏j−1
i=1 qi

,

I If limn→∞
∏n

j=1 qj = 0, Russian Roulette terminates with probability one

I Note E{Ŝ(θ)} = S(θ), variance finite under certain known conditions
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Ŝ(θ) =
k∑

j=0

φj (θ)∏j−1
i=1 qi

,

I If limn→∞
∏n

j=1 qj = 0, Russian Roulette terminates with probability one
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Summary..... so far

I Use Geometric or Exponential tilted correction of approximate likelihood

I Randomly and unbiasedly truncate tilt using Russian Roulette

I Plug estimate into MCMC transition kernel targeting absolute measure

I Obtain Monte Carlo estimates using state dependent sign correction
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Ising Spin Model

I Consider Ising model of spins xi ∈ {−1,+1} of the form

p(x|θ1, θ2) =
1

Z(θ1, θ2)
exp

θ1

∑
i

xi + θ2

∑
i∼j

xixj



I Partition function intractable 10× 10 torus ∼ 1.26× 1030 states
I 10 × 10 torus spin state simulated with θ1 = 0 and θ2 = 0.2
I SMC Sampling (AIS) employed for Ẑ(θ1, θ2), 1.5K samples in IS
I Russian Roulette parameters c = 0.2, r = 0.8, Uniform prior on θ2

I Acceptance rate of chain tuned to 45%
I 20K samples, ESS 1.6K, 0.2% sign violation rate (39)
I Posterior mean 0.2028 ± 0.0646, uncorrected 0.2032 ± 0.0649
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Fisher-Bingham Distribution
I Embedded normal on manifold Sd with p(y|A) ∝ exp{y′Ay}
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Figure: Sample traces and autocorrelation plots for the geometric tilting with
roulette truncation ((a) and (b)) and Walker’s method ((c) and (d)).)
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Large Scale GMRF Ozone Column Model
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Large Scale GMRF Ozone Column Model

I Previously analysed in Cressie, (2008) comprised of 173,405 ozone
measurements

I Data and spatial extent has precluded full Bayesian analysis to date

I Matern covariance function triangulated over 196,002 vertices on sphere
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I Employ trace log construction described in Aune et al 2012, Statistics
and Computing.
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Large Scale GMRF Some Details

I Likelihood estimate is of form
∑∞

i=0 αi , where αi built from independent
estimates of the same quantity

I Truncate at some n, so need n estimates α̂

I Log-determinant estimate is of the form Ez (zT log(Q)z). Monte-Carlo
estimate relies on independent estimates of zT log(Q)z

I Matrix logarithm in form log(Q)z ≈
∑N

i=1 A−1
i x . Solve N independent

linear systems

I For extremely large matrices A, matrix vector product Ax could be
parallelised on multicore-machines.

I Independent tasks, light-weight, and based on same data. Only scalar
parameters differ.

I Both MCMC speed/mixing and problem size scale with number of nodes
in cluster
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Conclusions and Discussion

I Presented general methodology for Exact-Approximate MCMC

I Exploits results from QCD literature, Russian Roulette, Absolute
Measure Target

I Exact MCMC on massive scale models feasible

I Would be good to have general solution to Sign Problem beyond
restrictive bounds

I Quality of mixing dependent on estimates of partition function

I Signed measure relaxes absolute bound in Generalised Poisson
Estimators

I Massively parallelizable - a very good thing
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