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Wrapping up

* Distributed inference in latent variable models
— Star Synchronization
— Delta aggregation



Wrapping up ...
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Wrapping up ...

 Global variables

— @: Topic distribution over
words

 Local variables

'a‘“Q

— 0: topic mixing vector
— Z: topic indicator
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Wrapping up ...

* Collapse global variables
-0

* Collapse local variables
—0

* Couples all Zs

* Run collapsed sampler
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Wrapping up ...
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Distributed Inference: LDA




Distributed Inference: LDA




Distributed Inference: LDA

Global State
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Distributed Inference: LDA

Global State
Nkw 5 Tk




General Architecture

e Star synchronization

— Works when variables depend on each other via
aggregates

* Counts, sums, etc.

— When state objects form an Abelian group
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Multilingual LDA

* Each topic has a distribution over words

* Fits parallel documents
— Example: Wikipedia
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What Is next?

* Can we fit any model only with those
asynchronous primitives?

— No
* We need synchronous operations

— Parameter optimization
e EM style algorithm

— Non-collapsed global variables



The Need for Synchronous Processing

What if we need to optimize over a?

distribution




The Need for Synchronous Processing

* E-Step
a — Run asynchronous
| collapsed sampler as
before
* M-step

— Reach a barrier

— Collect values needed to
optimize a

— One machine optimizes a
@ — Broadcast value back




Distributed Sampling Cycle

Sample # Sample Z NI — — — -

Optimize a

Requires a reduction step




Distributed Sampling Cycle




* Application
— Temporal Modeling of user interests
— Multi-domain user personalization
— Graph factorization
— Multi-task learning

e Asynchronous Distributed Optimization
— Can we get rid of the synchronous step?
— Asynchronous consensus
— Factorizing Y!M graph
e 200 Million users and 10 Billion edges
* The largest published work on graph factorization



Modeling User Interests
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Graph Factorization: Social Network




Computational Advertising:
Multitask learning
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Multi-domain Personalization

* |ntuition
— We observe user interaction with news and movies
— Can we predict his music taste?

* |Interaction definition

— A bag of words describing objects user interacts with
in a given domain
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A user’s interaction with a domain is a bag of words.

A topic is a mixture of words. ‘ ‘
User’s prior interest in a domain is \
a = log(1 + exp(Agxy)) \

Qs 0 s —w
N
\ User u’s interaction with domain d

Each user has a meta-profile: &, € Rk
Each domain has a latent matrix: Ay € R~Xtd

Slide credit Yucheng Low
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Music

Topic->word table
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News

Topic->word table
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Movies

Topic->word table

Slide credit Yucheng Low




Inference and Learning

o A

{ ~\
004z

N
\ User u’s interaction with domain p

E-Step: sample local variables



Distributed Sampling Cycle

Sample Z, x Sample Z,x Sample Z,x Sample Z,x
For users For users For users For users

Optimize A

Requires a reduction step




Distributed Sampling Cycle

Sample Z, x Sample Z, x Sample Z, x
For users For users For users

Barrier

Collect and

SPrmIze Do nothing Do nothing

Barrier

Sample Z, x
For users

Write
statistics

Do nothing

___-



2 domain dataset.
Frontpage and News clicks of 5.6 million users.
Frontpage/News: Article text for each click.

* Measure gain relative to independent models on
each domain
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Analysis

Celebrity Science
sandra, oscar, oscars, red, carpet, bullock, bacteria, fight, super, struggling, developed,
golden, gown, bullocks, nominee, bestactress, doctors, resistant, lethal, virtually, drugs,
sparkles, stunning, antibiotic, competitors, chad,

vienna, bachelor, jake, pavelka, giraldi, finale,  film, movie, movies, films, director, story,
show, stars, dancing, love, season, time, abc, avatar, james, time, hollywood, big, make, hes,
star,

Entertainment

Science Fiction



Tracking Users Interest




Characterizing User Interests

e Short term vs long-term

e

—>

Jan April July Oct



Characterizing User Interests

e Short term vs long-term
* Latent

= fast seafood

Jan April July Oct



Problem formulation

* Queries issued by the user or tags of watched content

* Snippet of page examined by user

* Time stamp of each action (day resolution)

» Users’ daily distribution over interests
* Dynamic interest representation

* Online and scalable inference

* Language independent

Flight classes School
London registration Supplies
Hotel housing Loan

weather rent semester




Problem formulation

* Queries issued by the user or tags of watched content

* Snippet of page examined by user
* Time stamp of each action (day resolution)

» Users’ daily distribution over interests
* Dynamic interest representation

* Online and scalable inference

* Language independent

ravel
o /\/

Back

To school

finance




Problem formulation

Back
To school

finance

ravel  (|asses

weather




Problem formulation
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Problem formulation

finance
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Problem formulation

* Queries issued by the user or tags of watched content

* Snippet of page examined by user
* Time stamp of each action (day resolution)

» Users’ daily distribution over interests
* Dynamic interest representation

* Online and scalable inference

* Language independent
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o /\/

Back

To school

finance




Mixed-Membership Formulation
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In Graphical Notation

o

1. Draw once Q|a ~ Dir(a/K).
2. Draw each topic ¢ |3 ~ Dir(J3).
3. For each user i:
(a) Draw topic proportions ;|\, 2 ~ Dir(A£2).
(b) For each word
(a) Draw a topic z;; |04 ~ Mult(6;).
(b) Draw a word w;;|zij;, ¢ ~ Multi(¢., ;).




In Polya-Urn Representation

* Collapse multinomial variables: @, ()

* Fixed-dimensional Hierarchal Polya-Urn
representation

— Chinese restaurant franchise



Global topics
trends

L Topic

Food Chicken Word'diStribUﬁonS

User-specific topics trends
JL (mixing-vector)

Car speed offer
camry accord career

User interactions: queries,

keyword from pages viewed
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* For each user interaction
* Choose an intent from local distribution

*Choose a hew intent o« A

distribution

* Sample word from the topic’s word-distribution

* Sample a new intent from the global distribution
* Sample word from the new topic word-
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* For each user interaction
* Choose an intent from local distribution

*Choose a hew intent o« A

distribution

e Sample word from the topic’s word-distribution

* Sample a new intent from the global distribution
* Sample word from the new topic word-
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* For each user interaction
* Choose an intent from local distribution

*Choose a new intent o A

distribution

* Sample word from the topic’s word-distribution

* Sample a new intent from the global distribution
* Sample word from the new topic word-
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* For each user interaction
* Choose an intent from local distribution

*Choose a hew intent o« A

distribution

* Sample word from the topic’s word-distribution

e Sample a new intent from the global distribution
* Sample word from the new topic word-
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* For each user interaction
* Choose an intent from local distribution

*Choose a hew intent o« A

distribution

e Sample word from topic’s word-distribution

* Sample a new intent from the global distribution
* Sample from word the new topic word-
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- Static Model
- Does not evolve user’s interests

- Does not evolve the global trend of interests
- Does not evolve interest’s distribution over terms
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m |
m% III

At time t+2

'y
Hn

N

l

ni

At time t+3

l

Which time kernel to

use at each level?

.I_L
QQ O

.
'
QQO-




Attimet

R
At time t+1
Recipe job Bank
Chocolate Career Online
Pizza Business Credit
Food Assistant Card
Chicken Hiring debt
Milk Part-time portfolio
Butter Receptio Finance
\ - Powder nist Chase
| .

N—

.

Food Chicken
pizza millage

>«||

- * eX
Pseudo counts P

Decay factor

A

Car speed offer
camry accord career

Observation 1

-Popular topics at time t are likely to be popular at time t+1
~ ¢y 141 IS likely to smoothly evolve from ¢,
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Observation 1

-Popular topics at time t are likely to be popular at time t+1
~ (y 41 IS likely to smoothly evolve from ¢, ,
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How do we get a prior
that captures both long

- User prior at time t+1 is a mixture of the user short and
long term interest
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At time t At time t+1 o
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l l * For each user interaction
* Choose an intent from local distribution

* Sample word from the topic’s word-distribution
*Choose a new intent o A

e Sample a new intent from the global distribution
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* Sample word from the new topic word-
distribution
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Simplified Graphical Model

1. Draw once QFf|a, m? ~ Dir(ﬁnt + oz/K).
2. Draw each topic, ¢} |£3, B}i ~ Dir(éi + 3).

3. For each user i:

(a) Draw topic proportions 0|\, Qf, i’ ~ Dir(AQ" + nl).
(b) For each word M1
(a) Draw a topic z! [0 ~ Mult(6?!).
(b) Draw a word wfn\zfj,qbt ~ l\f"Iulti(qﬁit ).
(]
At time t At time t+1
Br1

| LIS
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OO EO-O1G O,



Simplified Graphical Model

1. Draw once Qf|a, m? ~ Dir(fht - a/K). @ [ )
2. Draw each topic, ¢} |£3, ch ~ Dir(é}é + 3).
3. For each user u:

(a) Draw topic proportions 0|\, Qf, i’ ~ Dir(AQ" + nl).
(b) For each word @— @ @

(a) Draw a topic z! [0 ~ Mult(6?!).
(b) Draw a word wfn\zfj,gbt ~ Multi(qbit ). @

(]

y s S
fgkw = E exp "0 Np., Dek
h=1




Simplified Graphical Model

O,

1. Draw once Qt|Oé, mt ~ 1311”<mt +?/K) @ Q; Myt
2. Draw each topic, ¢} |3, B}, ~ Dir(8}, + 3).
3. For each user i:
(a) Draw topic proportions 0% |\, Qf if ~ Dir(AQ" + nl).
(b) For each word @—— O M1
(a) Draw a topic z! [0 ~ Mult(6?!).
(b) Draw a word wfn\zfj,qbt ~ 1\»’Iulti(¢itl).
1]
- L]
o Food Chicken
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Simplified Graphical Model

1. Draw once Qf|a, m? ~ Dir(fht + a/K). @ o -
~ ~ t t+1
2. Draw each topic, ¢} |3, B}, ~ Dir(8}, + 3).

3. For each user i:

(a) Draw topic proportions 0|\, Q" i’ ~ Dir(AQ" + n?).
(b) For each word @—

(a) Draw a topic z! |0 ~ Mult(6?!).
(b) Draw a word wfn\zfj,gbt ~ Multi(qbit ).
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M1
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Bot
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Simplified Graphical Model

1. Draw once Qf|a, m! ~ Dir(fr'lt + a/K).
2. Draw each topic, ¢} |£3, Bi ~ Dir(B,i + 3).

3. For each user i:
(a) Draw topic proportions 8¢\, Qf il ~ Dir(AQ" 4 il).
(b) For each word
(a) Draw a topic z! [6f ~ Mult(6!).
(b) Draw a word wfn\zfj,cbt ~ Multi(qﬁit ).

¥

Topics evolve over time?

User’s intent evolve over time?

A NN

Capture long and term interests of users?
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Online Distributed Inference

Work Flow



Work Flow
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Online Scalable Inference

* Online algorithm
— Greedy 1-particle filtering algorithm

©,

— Works well in practice

<

)
-, =
a-/

7 e

Ti+1

— Collapse all multinomials except Q,

* This makes distributed inference easier
— At each time t:
P(Qt’ Zt|ﬁt’ Bt’ ﬁlt)

O

Bee1

[

* Distributed scalable implementation
— Used first part architecture as a subroutine

— Added synchronous sampling capabilities



Distributed Inference (at time t)
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Distributed Inference (at time t)

Collapse all multinomial
Except Q
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After collapsing
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Fully Collapsed

Shared memory
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Semi-Collapsed

P(ij — k‘w;’tj — waﬂtaﬁf)

t—j | ~t t
x| ng 7l 4+ 0 + AL
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Distributed Sampling Cycle

Sample Z Sample Z Sample Z Sample Z
For users For users For users - For users

Sample Q,

Requires a reduction step




Distributed Sampling Cycle

Sample Z Sample Z Sample Z Sample Z
For users For users For users For users

Write counts

Barrier

Collect counts

and sample Q Lie susttiung Do nothing Do nothing

Barrier




Experimental Results

* Tasks is predicting convergence in display advertising

Use two datasets
— 6 weeks of user history

— Last week responses to Ads are used for testing

Baseline:

— User raw data as features

— Static topic model

dataset | # days | # users | # campaigns size
1 56 | 13.34M 241 | 242GB
2 44 33.56M 216 | 435GB




Interpretability
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Performance in Display Advertising
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Performance in Display Advertising

Weighted ROC measure

base | TLDA | TLDA+base | LDA+base
dataset 1 | 54.40 | 55.78 56.94 55.80
dataset 2 | 57.03 | 57.70 60.38 H8.54 A\

topics | TLDA | TLDA + base
dataset 1 [ 50 55.32 56.01

100 55.5 56.56

200 55.8 56.94
dataset 2 | 50 59.10 60.40

100 59.14 | 60.60

200 58.7 60.38

Static

Batch models




How Does It Scale?

30F

Fixed #machines=100 |

25

utes

2 Billion instances with 5M vocabulary

using 1000 machines
one iteration took ~ 3.8 minutes

Time

Linearly scaling #machines: 100,300,...

o N _

O 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Users (Documents) in Millions



Distributed Inference Revisited




To collapse or not to collapse?

* Not collapsing

— Keeps conditional independence
* Good for parallelization
e Requires synchronous sampling

— Might mix slowly

* Collapsing
— Mixes faster
— Hinder parallelism

— Use star-synchronization
* Works well if sibling depends on each
others via aggregates

* Requires asynchronous communication



Inference Primitive

* Collapse a variable
— Star synchronization for the sufficient statistics

* Sampling a variable
— Local

« Sample it locally (possibly using the synchronized statistics)

— Shared

* Synchronous sampling using a barrier
* Optimizing a variable
— Same as in the shared variable case
— Ex. Conditional topic models



Asynchronous vs. Synchronous

Optimization



Synchronous Processing

* Needed when
— Ex: Optimizing a global variable
* Mostly requires a barrier
* Advantages
— Easy to program
— Well-understood reusable templates
* Disadvantages

— The curse of the last reducer
— You are as fast as the slowest machine!



Synchronous Processing

Needed when

— The c he last reducer
— You are as fast as the slowest machine!



Asynchronous Optimization

Graph Factorization



Graph Factorization: Social Network




Natural Graphs

e Social networks
>1B vertices - Google+, Facebook, Twitter ...

* Mail graphs
>200M vertices for slice of Yahoo Mail

* Language
>1Mx10B vertices for (document,word) graph

 Computational advertising (ads, attributes)



Graph Factorization Problem

* Factor a graph into low rank components
e Assign a latent vector z; e R* with each node
* Optimize:

Observed value
over edges

Predicted value Regularization




Single-Machine Algorithm

* Just use stochastic gradient decent (SGD)

0
Z JEN (1)

* Cycle until convergence
— Read a node, i
— Update its latent factor
o0f )




Problem Scale

* Yahoo IM and Mail graphs

* Nodes are users

* Edges represent (log) number of messages
e 200 Million vertices

* 10 Billion edges



Challenges

* Parameter storage
— Too much for a single machine

* Approach
— Distribute the graph over machines
 How to partition the nodes?
— Synchronization
* How to synchronize replicated nodes

— Communication
 How to accommodate network topology



Challenges

Can we solve the problem with

similar ideas to
what we have covered?




Formulation as a
Consensus Problem




Partition and Replicate




Partition and Replicate

e Cycle until convergence

— Read a node, i
— Update its latent factor

e
&.° A=




Partition and Replicate

* Problem
— Some neighbors are missing

e Solution
— Replicate and synchronize

— Borrowed vs. owned nodes

L el | s




Consensus Formulation
* Original problem

FVZN =5 3 (Y (20 2) + 5 ZmHZHQ

(1,j)EFE

 Relaxed problem }

K 1 K
(k) -
kak(Y,X ,A)+2k§_jl

o 2
)
—1 )
Local factors
Deviation

* Local problem
(Y, X9, X)

1
S 0= XA Y il x P

(iaj)EEa ’LGVk



Partition and Replicate

* Formulation

— Introduce local copies
* A factor per node X

— Tie across machines
* Introduce global factor Z

* Penalizes deviations

ol [

x| |




Synchronous Optimization




Synchronous Algorithm

* Optimize joint objective over X,Z
* Local parameter updates

— Run SGD until convergence

minimize y ) f5 (Y, X%, X) + MZ 1Z; — Xi(k)HQ

1€V

Viinimize deviation

* Global parameter updates

minimize —Z[ Z | Z; — Xi(k)HQ}

1€V



Synchronous Algorithms

Global state
Distributed

shared memory O QO

2- The global state is distributed across machines
3- each machine keeps track of the global copy of

its owned variables




Step 1: Push global variables

Global state O

Distributed

shared memory O QO
@ O




Step 2: Local Optimization

Global state
Distributed
shared memory O O
O O
/
mlnlmlzeX(k)fk( , | )‘I‘ 5,“ || 1 7 H
1€V
x (k) O x (k) X%
O
O
O
,PT. ® O
O O
O




Step 3: Push and average

Global state
Distributed
shared memory O O
O O
1 K
minimizez E ,u g ||Z7;—XZ-( )HQ}
k=1 1€Vy
x (k) O x (k) x (k)
O
O
.T. O
® O
O O
O




Step 3: Push and average

Global state
Distributed

shared memory O QO




Summary of Synchronous Algorithm

* An improvement over standard Map-Reduce
e Curse of the last reducer

* You are as fast as the slowest machine
— Optimize local variables
— Barrier

— Optimize global variables
— Barrier

e Can we do better?



Asynchronous Optimization




An Asynchronous Algorithm

* Conceptual idea
— Optimize X and Z jointly

K K
1
(k) 2 _ x(R)2
> Ay X DEESN DN Pl d

e User SGD over (X,Z)
* Pick a local node
* Do a gradient step over corresponding X,Z!



Conceptual Idea

K K
1
(k) - (B2
> AV XON 453 w012 - x|

1eVy

ngi [Xz-(k)} =u(Z; — XM,




Parallel Updates

Global state
Distributed

shared memory O O

‘k ® o<//
O global variable
O




Parallel Asynchronous Updates

Global state -Receive local copy X_i from k
Distributed -Update Z_i
shared memory O O -Send back new Z_i to k
O O
A [5(k) (k)
2 oz, [XI] =uzi=xP)
of (k) 5(k)\Y v (k) ’
5 ®) - Z (Y;'J' — (XX >)Xj
i JEN(4)

+an X 4 p(x®) — 25,

Synchronization thread Send

X (k) O -Cycle through nodes -Cycle through nodes

./. -Update local copies - Send local copy to DSM
'PY‘. C tation thread
O SRR RS -Received Z_ifrom DSM
O - update cached copy

Synchronization thread receive




Summary of Asynchronous

Continuously update local variables X (via SGD)
Continuously send local variables to global
Continuously update global variable Z (via SGD)

Continuously send & overwrite global variables
to local



How Does it work?
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Objective Function
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Sync Vs. Async.

Full Dataset: 200M nodes

= = = Asynchronus optimization
= Synchronus optimization
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Solution Quality

32M Nodes

3 T T 1

- = = = Multi-Machine Asynchronus (32 machines)
295k e N === Single machine |

289}

2851

28}

2751

Average test erorr

265)

26F

2.55F

107 107 10° 10 10° 10’
Time in minutes (Log Scale)




Scalability

Scalability
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Practical Considerations

* How to partition the graph?
— We want to minimize the number of borrowed nodes

* Vertix cut vs. edge cut
* Affect convergence

* Network Optimization

— Take network topology into account



Single-pass greedy algorithm

*For each vertex v
*For each partition p
*We want to make sure that N(v) are in
the same partition
*Add N(v) / Nodes(p) to borrowed of p
*Select p with minimum number of added
borrowed nodes




The Effect of Partitioning Quality

Method Total borrowed | Partitioning time | Sync time
nodes (millions) (minutes) (seconds)
Flat 252.31 166 71.5
Hierarchical 392.33 48.67 85.9
Hier-LSH 640.67 17.8 136.1
Hier-Random 720.88 11.6 145.2




The Effect of Partitioning Quality

10 Effect of partitioning on performance

10 | 1 | | I | l — .
. == =Heirarchical
. w2t

-

Objective function

4 | | | | |
0 10 20 30 40 50 60 70 80 90
Time in minutes



Network Optimization

Rack 1 Rack 2
Vv Machine 2.1
2
Vl = Machine 1.6
V3 V, Machine 1.3 ’

Vi - Machine 1.3
V; == Machine 2.4
V4 Machine 2.1

Machine 1.5
V5 V4 V5 Machine 1.5

Machine 1.6

 We only know the layout at run time
* Solve a quadratic assighment problem

T'(m) = Z CriDr(k)yr) = Z Chi Z ThuTioDuw = tr Ce D’
Kkl Kl

uv



Sync time without QAP

Histogram of Sync time with QAP disabled
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Time in Seconds



Sync time with QAP

Histogram of Sync time with QAP enabled

16
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* Model as consensus problem
* Synchronous algorithms

— Curse of the last reducer

* Asynchronous algorithms
— Asynchronous parallel updates
— Network topology optimization
— Overlapping partitions

 Same idea applies to GMF models and collective
graph factorization, matrix factorization, etc.



Hierarchical Multi-task Learning
and Sparse Models

Computational Advertising



Display Advertising

* Behavioral targeting

* Given user feature vector
— URL, queries, etc.

* Prediction problems for each campaign
— Click prediction

— Conversion prediction

* Both are very sparse high-dimensional
classification problems



Research Question

* Can we leverage data across tasks/sub-tasks?

— Campaigns targeting sports lovers have similar
clicking pattern

— Can click data in one campaign help conversion?

* Challenges
- Hundred of millions of features
- Thousands of campaigns
- Billion of users
- We want to learn sparse models for serving



Matrix-vitiate distribution

attributes

tasks

Z ~N(0,15 ® Q) or equivalently z.; ~ N(0, )



OO @)

i € {1...m¢}
c € {1...m}

W ~ N(0,14 ® Q) or equivalently w.; ~ N(0, §2)

—logp(W|Q) =tr WQ 'W' +dlog|Q| + ¢
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subject to 2> 0 and tr{2 =1
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Hierarchical Multi-task learning

Z ~N(0,15 ® ) or equivalently z.; ~ N(0, )
We.q 1 N(l * ey @C)
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A i€ {1...ma0}
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©
c € {1...m}

Z ~N(0,15 ® ) or equivalently z.; ~ N(0, )
We.q 1 N(l VAR @c)




Optimization Problem

1

.. | | 1 T A—1
mW}_,nZl’ISIZI,Ige . log P(Yesij|Tesj, Wes) + 2trZ QO " Z
cS 7
1
+¥ §tr('wc. —1-2) (we. —1-2,)0,"
F A 1Z], + 2 1211, (17a)




tasks

Z||1 + A2 ||Z||2,1

Sparsity
S attributes
1X g = [[I1Xell - 1 Xa ]l

q



Optimization Problem

1
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Proximal Methods

minimize f(a) + AQ[a]

bi+1 := at+ — Nt0a f(at) and
1

-~ lla = buy ]| + A0l
T

at4+1 = argmin
0.
Example: L1

ari1 < sgn(bei1)maz(0, [bii1| — t;\)



Optimization Problem

1
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1
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Distributed Implementation

attributes

tasks

process tasks independently

A A A A A M

process for shrinkage over attributes




Public Dataset: 20-news group

alt.atheism
talk.religion.misc
soc.religion.christian

talk.politics.guns
talk.politics.misc

talk.politics.mideast
comp.sys.mac.hardware

comp.sys.ibm.pc.hardware
comp.graphics
comp.windows
comp.os.ms.windows.misc
misc.forsale

sci.electronics

comp.*

l

sci.space

sci.crypt

sci.med

rec.autos
rec.motorcycles
rec.sports.hockey
rec.sports.basketball




Public Dataset: 20-news group
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R2 score
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Yahoo Advertising Dataset

days wusers features campaigns dataset size
56 107 934,000 630 1.4TB

Table 2: Attachment multitask performance.

AUC STL ATT-MTRL
all subtasks 0.658 0.674
conversions 0.629 0.653
auxiliary (unattributed) 0.677 0.714

clicks 0.662 0.671



Ablation study

Table 4: Ablation study for ATT-MTRL.

AUC conversions all sub-tasks
L1 0.621 0.642
L1+L12 0.629 0.658
L1+L1240 0.641 0.663
L1+L124+6+4 0.653 0.674

1 € {1...mge
s € 1...m¢




How sparse is the model?

Table 3: Feature selection effectiveness:

Conversion AUC features
STL + £ + top features 0.606 10,000
STL + /2 + top features 0.609 30,000
STL + £ + top features 0.607 50,000
ATT-MTRL (aggressive) 0.631 3,992
ATT-MTRL (conservative) 0.653 17,789



 Two Hierarchical multi-task learning formulation
* Distributed client-server optimization

e Sparse models

* Application in display advertising

* Can be extended to arbitrary levels



Advanced Directions




Advanced Directions

Theoretical bounds and guarantees

Non-parametric models
— Learning structure from data

Working under communication constraints
More applications

— Citation analysis
* Graph factorization + LDA

Semi-asynchronous algorithms
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