
Amr Ahmed & Alex Smola

Research at Google

Big Data and
Large Scale Inference

Saturday, May 3, 14

Data on the Internet

Saturday, May 3, 14

•Tiny (2 cores)

(512MB, 50MFlops, 1000 examples)

•Small (4 cores)

(4GB, 10GFlops, 100k examples)

•Medium (16 cores)

(32GB, 100GFlops, 1M examples)

•Large (256 cores)

(512GB, 1TFlops, 100M examples)

•Massive
... need to work hard to make it work

Size calibration

3

Saturday, May 3, 14

4

Text
Text

http://wadejohnston1962.files.wordpress.com/2012/09/datainoneminute.jpg

This
is

not
a

toy

dataset

Saturday, May 3, 14

http://wadejohnston1962.files.wordpress.com/2012/09/datainoneminute.jpg
http://wadejohnston1962.files.wordpress.com/2012/09/datainoneminute.jpg

Source: place source info here

User generated content

>1B images, 40h video/minute

• Webpages (content, graph)

• Clicks (ad, page, social)

• Users (OpenID, FB Connect)

• e-mails (Hotmail, Y!Mail, Gmail)

• Photos, Movies (Flickr, YouTube, Vimeo ...)

• Cookies / tracking info (see Ghostery)

• Installed apps (Android market etc.)

• Location (Latitude, Loopt, Foursquared, Google Now)

• User generated content (Wikipedia & co)

• Ads (display, text, DoubleClick, Yahoo)

• Comments (Disqus, Facebook)

• Reviews (Yelp, Y!Local)

• Third party features (e.g. Experian)

• Social connections (LinkedIn, Facebook)

• Purchase decisions (Netflix, Amazon)

• Instant Messages (YIM, Skype, Gtalk)

• Search terms (Google, Bing)

• Timestamp (everything)

• News articles (BBC, NYTimes, Y!News)

• Blog posts (Tumblr, Wordpress)

• Microblogs (Twitter, Jaiku, Meme)

• Link sharing (Facebook, Delicious, Buzz)

• Network traffic

5

Saturday, May 3, 14

• Graphs

• Document collections

• Email/IM/Discussions

• Query stream

label free 6

• Ads

• Click feedback

• Emails

• Tags

• Location

labeled

Some machine learning problems

Saturday, May 3, 14

Summary
• Essentially infinite amount of data
• Labeling is prohibitively expensive
• Not scalable for i18n
• Even for supervised problems unlabeled data

abounds. Use it.
• User-understandable structure for

representation purposes
• Solutions are often customized to problem

We can only cover building blocks in tutorial.
Saturday, May 3, 14

Hardware

Saturday, May 3, 14

• High Performance Computing
Very reliable, custom built, expensive

• Consumer hardware
Cheap, efficient, easy to replicate,
not very reliable, deal with it!

Commodity Hardware

Saturday, May 3, 14

Slide courtesy of Jeff Dean

The Joys of Real Hardware

10

Saturday, May 3, 14

Scaling problems

11

•Data (lower bounds)

–>10 Billion documents (webpages, e-mails, ads, tweets)

–>100 Million users on Google, Facebook, Twitter, Yahoo, Hotmail

–>1 Million days of video on YouTube

–>10 Billion images on Facebook

•Processing capability for single machine 1TB/hour
But we have much more data

•Parameter space for models is too big for a single machine
Personalize content for many millions of users

•Process on many cores and many machines simultaneously

Saturday, May 3, 14

Map Reduce
• 1000s of (faulty) machines
• Lots of jobs are mostly embarrassingly parallel

(except for a sorting/transpose phase)
• Functional programming origins

• Map(key,value)
processes each (key,value) pair and outputs a new (key,value) pair

• Reduce(key,value)
reduces all instances with same key to aggregate

• Example - extremely naive wordcount
• Map(docID, document)

for each document emit many (wordID, count) pairs
• Reduce(wordID, count)

sum over all counts for given wordID and emit (wordID, aggregate)
from Ramakrishnan, Sakrejda, Canon, DoE 2011

Saturday, May 3, 14

Map Reduce
• 1000s of (faulty) machines
• Lots of jobs are mostly embarrassingly parallel

(except for a sorting/transpose phase)
• Functional programming origins

• Map(key,value)
processes each (key,value) pair and outputs a new (key,value) pair

• Reduce(key,value)
reduces all instances with same key to aggregate

• Example - extremely naive wordcount
• Map(docID, document)

for each document emit many (wordID, count) pairs
• Reduce(wordID, count)

sum over all counts for given wordID and emit (wordID, aggregate)

Saturday, May 3, 14

Map Reduce

Ghemawat & Dean, 2003

map(key,value) reduce(key,value)

easy fault tolerance
(simply restart workers)

moves computation to data

disk based inter process
communication

Saturday, May 3, 14

Map Combine Reduce
• Combine aggregates keys before sending to the reducer (saves bandwidth)
• Map must be stateless in blocks
• Reduce must be commutative in data
• Fault tolerance

• Start jobs where the data is
(move code note data - nodes run the file system, too)

• Restart machines if maps fail (have replicas)
• Restart reducers based on intermediate data

• Good fit for many algorithms
• Good if only a small number of MapReduce iterations needed
• Need to request machines at each iteration (time consuming)
• State lost in between maps
• Communication only via file I/O

Saturday, May 3, 14

Motivation - Topic models

Saturday, May 3, 14

Clustering

Saturday, May 3, 14

Clustering

Saturday, May 3, 14

Clustering

Saturday, May 3, 14

Clustering

Saturday, May 3, 14

Clustering

airline

restaurant

university

Saturday, May 3, 14

Generative Model

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...
objects

cluster ID

Saturday, May 3, 14

Generative Model

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

p(X,Y |✓,�, µ) =
nY

i=1

p(xi|yi, �, µ)p(yi|✓)

objects

cluster ID

Saturday, May 3, 14

What can we cluster?

Saturday, May 3, 14

What can we cluster?

text
news users

mails

queries

urls

ads

products

events
locations

spammers

abuse

Saturday, May 3, 14

Grouping objects

21

Saturday, May 3, 14

Grouping objects

Singapore

21

Saturday, May 3, 14

Grouping objects

21

Saturday, May 3, 14

Grouping objects

22

Saturday, May 3, 14

Grouping objects

airline

restaurant

university

22

Saturday, May 3, 14

Grouping objects

Australia

Singapore

USA

23

Saturday, May 3, 14

Topic Models

USA
airline

Singapore
airline

Singapore
foodUSA food

Singapore
university

Australia
university

24

Saturday, May 3, 14

Clustering & Topic Models

25

Clustering

?

group objects
by prototypes

Saturday, May 3, 14

Clustering & Topic Models

25

Clustering

?

group objects
by prototypes

Topics

decompose objects
into prototypes

Saturday, May 3, 14

Clustering & Topic Models

x

y

θ

prior

cluster
probability

cluster
label

instance x

y

θ

prior

topic
probability

topic label

instance

clustering Latent Dirichlet Allocation

α α

Saturday, May 3, 14

Clustering & Topic Models

Documentsmembership
Cluster/

topic
distributions

x =

clustering: (0, 1) matrix
topic model: stochastic matrix
LSI: arbitrary matrices

Saturday, May 3, 14

Topics in text

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003

Saturday, May 3, 14

Example Topics

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003
Saturday, May 3, 14

Dirichlet Distribution
• Is a distribution over the simplex, i.e. positive

vectors that sum to 1:

• α controls the shape of the distribution
• Expectations:

• Conjugate to the multinomial distribution

P (✓|↵) =
�(

P
i ↵i)Q

i �(↵i)

Y

i

✓↵i�1
i

E[✓i|↵] =
↵iP
i ↵i

Saturday, May 3, 14

α = 1

[Blei, LDA tutorial]
Saturday, May 3, 14

α = 100

[Blei, LDA tutorial]
Saturday, May 3, 14

α = 1

[Blei, LDA tutorial]
Saturday, May 3, 14

α = .1

α = 100

[Blei, LDA tutorial]
Saturday, May 3, 14

α = .01

[Blei, LDA tutorial]
Saturday, May 3, 14

Dirichlet Distribution
• Is a distribution over the simplex, i.e. positive

vectors that sum to 1:

• Conjugate to the multinomial distribution

•

P (✓|↵) =
�(

P
i ↵i)Q

i �(↵i)

Y

i

✓↵i�1
i

P (✓|↵, x) =
�(

P
i

x

i

+ ↵

i

)Q
i

�(x
i

+ ↵

i

)

Y

i

✓

xi+↵i�1
i

Saturday, May 3, 14

Dirichlet Distribution
• Prior

• Posterior

P (✓|↵) ⇠ Dir(↵1, ...,↵k)

P (✓|x,↵) ⇠ Dir(x1 + ↵1, ..., xk + ↵k)

E[✓i|↵] =
↵iP
i ↵i

E[✓i|x,↵] =
xi + ↵iP
i xi + ↵i

Saturday, May 3, 14

Joint Probability Distribution

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(⇤, z,⌅, x|�,⇥)

=
KY

k=1

p(⌅k|⇥)
mY

i=1

p(⇤i|�)

m,miY

i,j

p(zij |⇤i)p(xij |zij ,⌅)

Saturday, May 3, 14

sample z
independently

sample θ
independently

Joint Probability Distribution

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(⇤, z,⌅, x|�,⇥)

=
KY

k=1

p(⌅k|⇥)
mY

i=1

p(⇤i|�)

m,miY

i,j

p(zij |⇤i)p(xij |zij ,⌅)

sample Ψ
independently

Saturday, May 3, 14

sample z
independently

sample θ
independently

Joint Probability Distribution

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(⇤, z,⌅, x|�,⇥)

=
KY

k=1

p(⌅k|⇥)
mY

i=1

p(⇤i|�)

m,miY

i,j

p(zij |⇤i)p(xij |zij ,⌅)

sample Ψ
independently slow

Saturday, May 3, 14

Collapsed Sampler

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY

k=1

p({xij |zij = k} |⇥)

Saturday, May 3, 14

sample z
sequentially

Collapsed Sampler

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY

k=1

p({xij |zij = k} |⇥)

Saturday, May 3, 14

sample z
sequentially

Collapsed Sampler

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY

k=1

p({xij |zij = k} |⇥)
fast

Saturday, May 3, 14

Collapsed Sampler

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY

k=1

p({xij |zij = k} |⇥)

n�ij(t, w) + �t

n�i(t) +
P

t �t

n�ij(t, d) + �t

n�i(d) +
P

t �t

Griffiths & Steyvers, 2005

Saturday, May 3, 14

Collapsed Sampler

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY

k=1

p({xij |zij = k} |⇥)
fast

n�ij(t, w) + �t

n�i(t) +
P

t �t

n�ij(t, d) + �t

n�i(d) +
P

t �t

Griffiths & Steyvers, 2005

Saturday, May 3, 14

Derivations (was on the board)

p(zij = t|z�ij ,↵) =

Z

✓
p(✓, zij = t|z�ij ,↵)d✓

=

Z

✓
p(✓|z�ij ,↵)p(zij = t|✓, z�ij ,↵)d✓

=

Z

✓
p(✓|z�ij ,↵)p(zij = t|✓)d✓

=

Z

✓
p(✓|z�ij ,↵)✓td✓

= Ep(✓|z�ij ,↵)[✓t]

= mean of the posterior of ✓ given other topic assignments

total rule of
probability

Chain rule

conditional
independence

n�ij(t, d) + �t

n�i(d) +
P

t �t

Derivation for the second factor follows similarly
Saturday, May 3, 14

Sequential Algorithm (Gibbs sampler)

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table

Saturday, May 3, 14

Sequential Algorithm (Gibbs sampler)

this kills parallelism

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table

Saturday, May 3, 14

Design Principles

Saturday, May 3, 14

Scaling Problems

Saturday, May 3, 14

3 Problems

mean
variance

cluster weight

data cluster ID

45

Saturday, May 3, 14

3 Problems

global state

data local state

46

Saturday, May 3, 14

3 Problems

too big for
single machine

huge only local

47

Saturday, May 3, 14

3 Problems

data

local state

global state

Vanilla LDA

User profiling

global state

48

Saturday, May 3, 14

3 Problems

data

local state

global state

Vanilla LDA

User profiling

global state

48

Saturday, May 3, 14

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

49

Saturday, May 3, 14

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

stream local
data from disk

49

Saturday, May 3, 14

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

stream local
data from disk

asynchronous
synchronization

49

Saturday, May 3, 14

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

stream local
data from disk

asynchronous
synchronization

partial view

49

Saturday, May 3, 14

Global state synchronization

Saturday, May 3, 14

Challenges

• Distribution (global)
• Synchronization (global)
• Fault tolerance
• Storage (local)

Saturday, May 3, 14

Distribution

global
state

data
local
state

Saturday, May 3, 14

Distribution

global
state

data local
state

copy

Saturday, May 3, 14

Distribution

global
replica

rack

cluster

Saturday, May 3, 14

Distribution

global
replica

rack

cluster

Saturday, May 3, 14

Synchronization
• Child updates local state

• Start with common state
• Child stores old and new state
• Parent keeps global state

• Transmit differences asynchronously
• Inverse element for difference
• Abelian group for commutativity (sum, log-sum, cyclic group, exponential families)

local to global global to local

x x+ (xglobal � x

old)

x

old x

global

� x� x

old

x

old x

x

global x

global + �

Saturday, May 3, 14

Distribution
• Dedicated server for variables

• Insufficient bandwidth (hotspots)
• Insufficient memory

• Select server via consistent hashing

m(x) = argmin
m2M

h(x,m)

Saturday, May 3, 14

Distribution & fault tolerance
• Storage is O(1/k) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per

vertex)
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)

Saturday, May 3, 14

Distribution & fault tolerance
• Storage is O(1/k) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per

vertex)
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)

Saturday, May 3, 14

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

client

server

r=1

Saturday, May 3, 14

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

client

server

r=1

Saturday, May 3, 14

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

client

server

r=1

Saturday, May 3, 14

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

• Efficiency guarantee [Ahmed et. al WSDM 2012]

4 simultaneous connections are sufficient
Saturday, May 3, 14

Architecture

Saturday, May 3, 14

Sequential Algorithm (Gibbs sampler)

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table

62

Saturday, May 3, 14

Sequential Algorithm (Gibbs sampler)

this kills parallelism

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table

62

Saturday, May 3, 14

Distributed asynchronous sampler

63

•For 1000 iterations do (independently per computer)
–For each thread/core do

•For each document do
–For each word in the document do

»Resample topic for the word
»Update local (document, topic) table
»Generate computer local (word, topic) message

•In parallel update local (word, topic) table
–In parallel update global (word, topic) table

Saturday, May 3, 14

Distributed asynchronous sampler

continuous
sync barrier freeconcurrent

cpu hdd net
minimal

view
63

•For 1000 iterations do (independently per computer)
–For each thread/core do

•For each document do
–For each word in the document do

»Resample topic for the word
»Update local (document, topic) table
»Generate computer local (word, topic) message

•In parallel update local (word, topic) table
–In parallel update global (word, topic) table

Saturday, May 3, 14

Multicore Architecture

•Decouple multithreaded sampling and updating
(almost) avoids stalling for locks in the sampler

•Joint state table
–much less memory required
–samplers syncronized (10 docs vs. millions delay)

•Hyperparameter update via stochastic gradient descent
•No need to keep documents in memory (streaming)

tokens

topics

file

combiner

count

updater

diagnostics

&

optimization

output to

file
topics

sampler
sampler

sampler
sampler

sampler

Intel Threading Building Blocks

joint state table

64

Saturday, May 3, 14

Cluster Architecture

•Distributed (key,value) storage via ICE
•Background asynchronous synchronization
–single word at a time to avoid deadlocks
–no need to have joint dictionary
–uses disk, network, cpu simultaneously

sampler sampler sampler sampler

iceiceiceice

65

Saturday, May 3, 14

Cluster Architecture

sampler sampler sampler sampler

iceiceiceice

66

•Distributed (key,value) storage via ICE
•Background asynchronous synchronization
–single word at a time to avoid deadlocks
–no need to have joint dictionary
–uses disk, network, cpu simultaneously

Saturday, May 3, 14

Making it work

•Startup
–Naive: randomly initialize topics on each node
(read from disk if already assigned - hotstart)

–Forward sampling for startup much faster
–Aggregate changes on the fly

•Failover
–State constantly being written to disk
(worst case we lose 1 iteration out of 1000)

–Restart via standard startup routine
•Achilles heel: need to restart from checkpoint if even a
single machine dies.

67

Saturday, May 3, 14

Easily extensible

•Better language model (topical n-grams)
can process millions of users (vs 1000s)
•Conditioning on side information (upstream)
estimate topic based on authorship, source,
joint user model ...
•Conditioning on dictionaries (downstream)
integrate topics between different languages
•Time dependent sampler for user model
approximate inference per episode

68

Saturday, May 3, 14

Speed (2010 numbers)

•1M documents per day on 1 computer
(1000 topics per doc, 1000 words per doc)

•350k documents per day per node
(context switches & memcached & stray reducers)

•8 Million docs (Pubmed)
(sampler does not burn in well - too short doc)
–Irvine: 128 machines, 10 hours
–Yahoo: 1 machine, 11 days

69

Saturday, May 3, 14

Fast sampler

• 8 Million documents, 1000 topics, {100,200,400} machines, LDA

• Red (symmetric latency bound message passing)

• Blue (asynchronous bandwidth bound message passing & message scheduling)

– 10x faster synchronization time

– 10x faster snapshots

– Scheduling improves 10% already on 150 machines
70

Saturday, May 3, 14

Summary

•Data

•Hardware

•Distributed latent variable inference

•Many models

–User profiling

– Multi-domain analysis

– Social network analysis

71

Saturday, May 3, 14

