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Data on the Internet
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•Tiny (2 cores)

(512MB, 50MFlops, 1000 examples)

•Small (4 cores)

(4GB, 10GFlops, 100k examples)

•Medium (16 cores)

(32GB, 100GFlops, 1M examples)

•Large (256 cores)

(512GB, 1TFlops, 100M examples)

•Massive
... need to work hard to make it work

Size calibration
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Text
Text

http://wadejohnston1962.files.wordpress.com/2012/09/datainoneminute.jpg

This
is

not
a

toy

dataset

Saturday, May 3, 14

http://wadejohnston1962.files.wordpress.com/2012/09/datainoneminute.jpg
http://wadejohnston1962.files.wordpress.com/2012/09/datainoneminute.jpg


Source: place source info here

User generated content

>1B images, 40h video/minute 

• Webpages (content, graph)

• Clicks (ad, page, social)

• Users (OpenID, FB Connect)

• e-mails (Hotmail, Y!Mail, Gmail)

• Photos, Movies (Flickr, YouTube, Vimeo ...)

• Cookies / tracking info (see Ghostery)

• Installed apps (Android market etc.)

• Location (Latitude, Loopt, Foursquared, Google Now)

• User generated content (Wikipedia & co)

• Ads (display, text, DoubleClick, Yahoo)

• Comments (Disqus, Facebook)

• Reviews (Yelp, Y!Local)

• Third party features (e.g. Experian)

• Social connections (LinkedIn, Facebook)

• Purchase decisions (Netflix, Amazon)

• Instant Messages (YIM, Skype, Gtalk)

• Search terms (Google, Bing)

• Timestamp (everything)

• News articles (BBC, NYTimes, Y!News)

• Blog posts (Tumblr, Wordpress)

• Microblogs (Twitter, Jaiku, Meme)

• Link sharing (Facebook, Delicious, Buzz)

• Network traffic
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• Graphs

• Document collections 

• Email/IM/Discussions

• Query stream

label free 6

• Ads

• Click feedback

• Emails

• Tags

• Location

labeled

Some machine learning problems
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Summary
• Essentially infinite amount of data
• Labeling is prohibitively expensive
• Not scalable for i18n
• Even for supervised problems unlabeled data 

abounds. Use it.
• User-understandable structure for 

representation purposes
• Solutions are often customized to problem

We can only cover building blocks in tutorial.
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Hardware
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• High Performance Computing
Very reliable, custom built, expensive

• Consumer hardware
Cheap, efficient, easy to replicate,
not very reliable, deal with it!

Commodity Hardware
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Slide courtesy of Jeff Dean

The Joys of Real Hardware

10
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Scaling problems

11

•Data (lower bounds)

–>10 Billion documents (webpages, e-mails, ads, tweets)

–>100 Million users on Google, Facebook, Twitter, Yahoo, Hotmail

–>1 Million days of video on YouTube

–>10 Billion images on Facebook

•Processing capability for single machine 1TB/hour
But we have much more data

•Parameter space for models is too big for a single machine 
Personalize content for many millions of users

•Process on many cores and many machines simultaneously
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Map Reduce
• 1000s of (faulty) machines
• Lots of jobs are mostly embarrassingly parallel

(except for a sorting/transpose phase)
• Functional programming origins

• Map(key,value)
processes each (key,value) pair and outputs a new (key,value) pair

• Reduce(key,value)
reduces all instances with same key to aggregate

• Example - extremely naive wordcount
• Map(docID, document)

for each document emit many (wordID, count) pairs
• Reduce(wordID, count)

sum over all counts for given wordID and emit (wordID, aggregate)
from Ramakrishnan, Sakrejda, Canon, DoE 2011

Saturday, May 3, 14



Map Reduce
• 1000s of (faulty) machines
• Lots of jobs are mostly embarrassingly parallel

(except for a sorting/transpose phase)
• Functional programming origins

• Map(key,value)
processes each (key,value) pair and outputs a new (key,value) pair

• Reduce(key,value)
reduces all instances with same key to aggregate

• Example - extremely naive wordcount
• Map(docID, document)

for each document emit many (wordID, count) pairs
• Reduce(wordID, count)

sum over all counts for given wordID and emit (wordID, aggregate)

Saturday, May 3, 14



Map Reduce

Ghemawat & Dean, 2003

map(key,value) reduce(key,value)

easy fault tolerance 
(simply restart workers)

moves computation to data

disk based inter process 
communication
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Map Combine Reduce
• Combine aggregates keys before sending to the reducer (saves bandwidth)
• Map must be stateless in blocks
• Reduce must be commutative in data
• Fault tolerance

• Start jobs where the data is 
(move code note data - nodes run the file system, too)

• Restart machines if maps fail (have replicas)
• Restart reducers based on intermediate data

• Good fit for many algorithms
• Good if only a small number of MapReduce iterations needed
• Need to request machines at each iteration (time consuming)
• State lost in between maps
• Communication only via file I/O
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Motivation - Topic models
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Clustering
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Clustering
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Clustering
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Clustering
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Clustering

airline

restaurant

university
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Generative Model
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objects

cluster ID
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Generative Model

y1

x1

y2

xi
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xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ
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p(X,Y |✓,�, µ) =
nY

i=1

p(xi|yi, �, µ)p(yi|✓)

objects

cluster ID
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What can we cluster?
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What can we cluster?

text
news users

mails

queries

urls

ads

products

events
locations

spammers

abuse
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Grouping objects

21
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Grouping objects

Singapore

21
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Grouping objects

21
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Grouping objects

22
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Grouping objects

airline

restaurant

university

22

Saturday, May 3, 14



Grouping objects

Australia

Singapore

USA

23
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Topic Models

USA 
airline

Singapore
airline

Singapore 
foodUSA food

Singapore 
university

Australia 
university
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Clustering & Topic Models

25

Clustering

?

group objects
by prototypes
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Clustering & Topic Models

25

Clustering

?

group objects
by prototypes

Topics

decompose objects
into prototypes
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Clustering & Topic Models

x

y

θ

prior

cluster 
probability

cluster 
label

instance x

y

θ

prior

topic 
probability

topic label

instance

clustering Latent Dirichlet Allocation

α α
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Clustering & Topic Models

Documentsmembership
Cluster/

topic
distributions

x =

clustering: (0, 1) matrix
topic model: stochastic matrix
LSI: arbitrary matrices
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Topics in text

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003

Saturday, May 3, 14



Example Topics

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003
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Dirichlet Distribution
• Is a distribution over the simplex, i.e. positive 

vectors that sum to 1:

• α controls the shape of the distribution
• Expectations: 

• Conjugate to the multinomial distribution

P (✓|↵) =
�(

P
i ↵i)Q

i �(↵i)

Y

i

✓↵i�1
i

E[✓i|↵] =
↵iP
i ↵i
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α = 1

[Blei, LDA tutorial]
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α = 100

[Blei, LDA tutorial]
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α = 1

[Blei, LDA tutorial]
Saturday, May 3, 14



α = .1

α = 100

[Blei, LDA tutorial]
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α = .01

[Blei, LDA tutorial]
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Dirichlet Distribution
• Is a distribution over the simplex, i.e. positive 

vectors that sum to 1:

• Conjugate to the multinomial distribution

•

P (✓|↵) =
�(

P
i ↵i)Q

i �(↵i)

Y

i

✓↵i�1
i

P (✓|↵, x) =
�(

P
i

x

i

+ ↵

i

)Q
i

�(x
i

+ ↵

i

)

Y

i

✓

xi+↵i�1
i
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Dirichlet Distribution
• Prior

• Posterior

P (✓|↵) ⇠ Dir(↵1, ...,↵k)

P (✓|x,↵) ⇠ Dir(x1 + ↵1, ..., xk + ↵k)

E[✓i|↵] =
↵iP
i ↵i

E[✓i|x,↵] =
xi + ↵iP
i xi + ↵i
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Joint Probability Distribution

xij

zij

θi

language prior

topic 
probability
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=
KY

k=1

p(⌅k|⇥)
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m,miY
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p(zij |⇤i)p(xij |zij ,⌅)
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sample z
independently

sample θ
independently

Joint Probability Distribution

xij
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probability
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mY

i=1
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m,miY

i,j

p(zij |⇤i)p(xij |zij ,⌅)

sample Ψ
independently
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sample z
independently

sample θ
independently

Joint Probability Distribution

xij
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topic 
probability

topic label

instance

α

ψkβ

p(⇤, z,⌅, x|�,⇥)

=
KY
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p(⌅k|⇥)
mY

i=1

p(⇤i|�)

m,miY

i,j

p(zij |⇤i)p(xij |zij ,⌅)

sample Ψ
independently slow
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Collapsed Sampler
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sample z
sequentially

Collapsed Sampler
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sample z
sequentially

Collapsed Sampler
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Collapsed Sampler

xij

zij

θi

language prior

topic 
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY
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p({xij |zij = k} |⇥)

n�ij(t, w) + �t

n�i(t) +
P

t �t

n�ij(t, d) + �t

n�i(d) +
P

t �t

Griffiths & Steyvers, 2005
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Collapsed Sampler
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Derivations (was on the board)

p(zij = t|z�ij ,↵) =

Z

✓
p(✓, zij = t|z�ij ,↵)d✓

=

Z

✓
p(✓|z�ij ,↵)p(zij = t|✓, z�ij ,↵)d✓

=

Z

✓
p(✓|z�ij ,↵)p(zij = t|✓)d✓

=

Z

✓
p(✓|z�ij ,↵)✓td✓

= Ep(✓|z�ij ,↵)[✓t]

= mean of the posterior of ✓ given other topic assignments

total rule of 
probability

Chain rule

conditional 
independence

n�ij(t, d) + �t

n�i(d) +
P

t �t

Derivation for the second factor follows similarly
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Sequential Algorithm (Gibbs sampler)

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table
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Sequential Algorithm (Gibbs sampler)

this kills parallelism

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table
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Design Principles
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Scaling Problems

Saturday, May 3, 14



3 Problems

mean
variance

cluster weight

data cluster ID

45
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3 Problems

global state

data local state
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3 Problems

too big for 
single machine

huge only local
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3 Problems

data

local state

global state

Vanilla LDA

User profiling

global state
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3 Problems

data

local state

global state

Vanilla LDA

User profiling

global state
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3 Problems

global state
is too large

does not fit 
into memory

network load 
& barriers

does not fit 
into memory

local state
is too large

49
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3 Problems
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asynchronous 
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3 Problems

global state
is too large

does not fit 
into memory

network load 
& barriers

does not fit 
into memory

local state
is too large

stream local 
data from disk

asynchronous 
synchronization

partial view

49
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Global state synchronization
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Challenges

• Distribution (global)
• Synchronization (global)
• Fault tolerance
• Storage (local)
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Distribution

global
state

data
local
state
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Distribution

global
state

data local
state

copy
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Distribution

global
replica

rack

cluster
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Distribution

global
replica

rack

cluster
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Synchronization
• Child updates local state

• Start with common state
• Child stores old and new state
• Parent keeps global state

• Transmit differences asynchronously
• Inverse element for difference
• Abelian group for commutativity (sum, log-sum, cyclic group, exponential families)

local to global global to local

x x+ (xglobal � x

old)

x

old  x

global

�  x� x

old

x

old  x

x

global  x

global + �
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Distribution
• Dedicated server for variables

• Insufficient bandwidth (hotspots)
• Insufficient memory

• Select server via consistent hashing

m(x) = argmin
m2M

h(x,m)
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Distribution & fault tolerance
• Storage is O(1/k) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per 

vertex)
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)
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Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

client

server

r=1
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Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

• Efficiency guarantee [Ahmed et. al WSDM 2012]

4 simultaneous connections are sufficient
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Architecture
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Sequential Algorithm (Gibbs sampler)

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table

62
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Sequential Algorithm (Gibbs sampler)

this kills parallelism

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table

62
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Distributed asynchronous sampler

63

•For 1000 iterations do (independently per computer)
–For each thread/core do

•For each document do
–For each word in the document do

»Resample topic for the word
»Update local (document, topic) table
»Generate computer local (word, topic) message

•In parallel update local (word, topic) table
–In parallel update global (word, topic) table
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Distributed asynchronous sampler

continuous
sync barrier freeconcurrent

cpu hdd net
minimal 

view
63

•For 1000 iterations do (independently per computer)
–For each thread/core do

•For each document do
–For each word in the document do

»Resample topic for the word
»Update local (document, topic) table
»Generate computer local (word, topic) message

•In parallel update local (word, topic) table
–In parallel update global (word, topic) table
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Multicore Architecture

•Decouple multithreaded sampling and updating 
(almost) avoids stalling for locks in the sampler

•Joint state table
–much less memory required
–samplers syncronized (10 docs vs. millions delay)

•Hyperparameter update via stochastic gradient descent
•No need to keep documents in memory (streaming)

tokens

topics

file 

combiner

count

updater

diagnostics

& 

optimization

output to

file
topics

sampler
sampler

sampler
sampler

sampler

Intel Threading Building Blocks

joint state table
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Cluster Architecture

•Distributed (key,value) storage via ICE
•Background asynchronous synchronization
–single word at a time to avoid deadlocks
–no need to have joint dictionary
–uses disk, network, cpu simultaneously

sampler sampler sampler sampler

iceiceiceice

65
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Cluster Architecture

sampler sampler sampler sampler

iceiceiceice

66

•Distributed (key,value) storage via ICE
•Background asynchronous synchronization
–single word at a time to avoid deadlocks
–no need to have joint dictionary
–uses disk, network, cpu simultaneously
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Making it work

•Startup
–Naive: randomly initialize topics on each node 
(read from disk if already assigned - hotstart)

–Forward sampling for startup much faster
–Aggregate changes on the fly

•Failover
–State constantly being written to disk
(worst case we lose 1 iteration out of 1000)

–Restart via standard startup routine
•Achilles heel: need to restart from checkpoint if even a 
single machine dies.

67
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Easily extensible

•Better language model (topical n-grams)
can process millions of users (vs 1000s)
•Conditioning on side information (upstream)
estimate topic based on authorship, source, 
joint user model ...
•Conditioning on dictionaries (downstream)
integrate topics between different languages
•Time dependent sampler for user model
approximate inference per episode

68
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Speed (2010 numbers)

•1M documents per day on 1 computer
(1000 topics per doc, 1000 words per doc)

•350k documents per day per node
(context switches & memcached & stray reducers)

•8 Million docs (Pubmed)
(sampler does not burn in well - too short doc)
–Irvine: 128 machines, 10 hours
–Yahoo: 1 machine, 11 days 

69
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Fast sampler

• 8 Million documents, 1000 topics, {100,200,400} machines, LDA

• Red (symmetric latency bound message passing)

• Blue (asynchronous bandwidth bound message passing & message scheduling) 

– 10x faster synchronization time

– 10x faster snapshots

– Scheduling improves 10% already on 150 machines
70
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Summary

•Data

•Hardware

•Distributed latent variable inference

•Many models

–User profiling

– Multi-domain analysis 

– Social network analysis

71
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