Efficient Bayesian inference with Hamiltonian Monte Carlo

Michael Betancourt
University of Warwick
Machine Learning Summer School 2014
April 29, 2014

Can big data support big models?

Sample Size

Can big data support big models?

Can big data support big models?

Can big data support big models?

Sample Size

Can big data support big models?

Sample Size

Markov Chain Monte Carlo in Practice

Bayesian inference is a powerful tool for asking germane statistical questions

Bayesian inference is a powerful tool for asking germane statistical questions

$$
\pi(\theta)
$$

Bayesian inference is a powerful tool for asking germane statistical questions

$$
\pi(\mathcal{D} \mid \theta) \pi(\theta)
$$

Bayesian inference is a powerful tool for asking germane statistical questions

$$
\pi(\theta \mid \mathcal{D}) \propto \pi(\mathcal{D} \mid \theta) \pi(\theta)
$$

But what makes a good statistical question?

But what makes a good statistical question?

$$
f(\hat{\theta}), \hat{\theta}=\operatorname{argmax} \pi(\theta)
$$

But what makes a good statistical question?

$$
\begin{gathered}
f(\hat{\theta}), \hat{\theta}=\operatorname{argmax} \pi(\theta) \\
\mathbb{E}[f(\theta)]=\int \mathrm{d} \theta \pi(\theta) f(\theta)
\end{gathered}
$$

Probability densities are a computational convenience -our questions should not rely on them

Probability densities are a computational convenience -our questions should not rely on them

$$
\pi: \mathcal{B}(\Omega) \rightarrow[0,1]
$$

Probability densities are a computational convenience -our questions should not rely on them

$$
\pi: \mathcal{B}(\Omega) \rightarrow[0,1]
$$

$$
\theta: \Omega \rightarrow \mathbb{R}^{n}
$$

$$
\mathrm{d} \pi(\theta)=\mathrm{d} \theta \pi(\theta)
$$

Probability mass is fundamental, not density!

$$
\begin{aligned}
& f(\hat{\theta}), \hat{\theta}=\operatorname{argmax} \pi(\theta) \\
& \mathbb{E}[f(\theta)]=\int \mathrm{d} \theta \pi(\theta) f(\theta)
\end{aligned}
$$

Probability mass is fundamental, not density!

$$
f(\hat{\theta}), \hat{\theta}=\operatorname{argmax} \pi(\theta)
$$

And mass can be very far away from density

And mass can be very far away from density

And mass can be very far away from density

And mass can be very far away from density

$$
\mathrm{d}=1
$$

And mass can be very far away from density

And mass can be very far away from density

And mass can be very far away from density

And mass can be very far away from density

Well-posed queries can be answered by integrating the posterior

$$
\mathbb{E}[f(\theta)]=\int \mathrm{d} \theta f(\theta) \pi(\theta \mid \mathcal{D})
$$

Well-posed queries can be answered
 by integrating the posterior

$$
\begin{gathered}
\mathbb{E}[f(\theta)]=\int \mathrm{d} \theta f(\theta) \pi(\theta \mid \mathcal{D}) \\
\pi\left(\theta_{2}, \ldots, \theta_{n} \mid \mathcal{D}\right)=\int \mathrm{d} \theta_{1} \pi(\theta \mid \mathcal{D})
\end{gathered}
$$

Well-posed queries can be answered by integrating the posterior

$$
\begin{gathered}
\mathbb{E}[f(\theta)]=\int \mathrm{d} \theta f(\theta) \pi(\theta \mid \mathcal{D}) \\
\pi\left(\theta_{2}, \ldots, \theta_{n} \mid \mathcal{D}\right)=\int \mathrm{d} \theta_{1} \pi(\theta \mid \mathcal{D}) \\
\pi\left(\theta_{2}, \ldots, \theta_{n} \mid \theta_{1}, \mathcal{D}\right)=\frac{\pi(\theta \mid \mathcal{D})}{\int \mathrm{d} \theta_{1} \pi(\theta \mid \mathcal{D})}
\end{gathered}
$$

Building a posterior is straightforward: Bayesian inference is hard because integration is hard

$$
\mathbb{E}[f(\theta)]=\int \mathrm{d} \theta f(\theta) \pi(\theta \mid \mathcal{D})
$$

The key to efficient integration is Markov Chain Monte Carlo

Google books Ngram Viewer

- Markov Chain Monte Carlo

Here the posterior is represented with a set of samples from which expectations can be efficiently computed

$$
p(\theta \mid \mathcal{D}) \rightarrow\left\{\theta_{1}, \ldots, \theta_{n}\right\}
$$

Here the posterior is represented with a set of samples from which expectations can be efficiently computed

$$
\begin{aligned}
& p(\theta \mid \mathcal{D}) \rightarrow\left\{\theta_{1}, \ldots, \theta_{n}\right\} \\
& \mathbb{E}[f(\theta)] \approx \frac{1}{N} \sum_{n=1}^{N} f\left(\theta_{i}\right)
\end{aligned}
$$

We generate those samples with a Markov chain, typically defined by its transition kernel

$$
\pi^{\prime}(\theta)=\int \mathrm{d} \theta T\left(\theta, \theta^{\prime}\right) \pi\left(\theta^{\prime}\right)
$$

In practice, MCMC proceeds in three stages

In practice, MCMC proceeds in three stages

In practice, MCMC proceeds in three stages

In practice, MCMC proceeds in three stages

Warmup

A Markov chain will preserve its stationary distribution...

$$
\pi(\theta)=\int \mathrm{d} \theta T\left(\theta, \theta^{\prime}\right) \pi\left(\theta^{\prime}\right)
$$

But in order to reach the stationary distribution we have to "filter" our initial distribution

$$
\pi(\theta)=\int \mathrm{d} \theta T\left(\theta, \theta^{\prime}\right) \ldots \int \mathrm{d} \theta^{\prime \prime \prime} T\left(\theta^{\prime \prime \prime}, \theta^{\prime \prime \prime \prime}\right) \pi\left(\theta^{\prime \prime \prime \prime}\right)
$$

But in order to reach the stationary distribution we have to "filter" our initial distribution

But in order to reach the stationary distribution we have to "filter" our initial distribution

But in order to reach the stationary distribution we have to "filter" our initial distribution

But in order to reach the stationary distribution we have to "filter" our initial distribution

But in order to reach the stationary distribution

 we have to "filter" our initial distribution

In practice it's easier to consider the state of the Markov chain relative to the typical set

In practice it's easier to consider the state of the Markov chain relative to the typical set

In practice it's easier to consider the state of the Markov chain relative to the typical set

In high dimensions the typical set is often vary far from any MAP

How do we know that we've converged? Visual diagnostics are appealing...

But they can be misleading!

The best strategy is to run multiple chains from diffuse initializations and compare

$$
\hat{R}=\sqrt{\frac{N-1}{N}+\frac{1}{N} \frac{B}{W}}
$$

We can also learn sampler parameters during warmup, provided we've already converged

$$
\begin{aligned}
& q \rightarrow q+\epsilon M^{-1} p \\
& p \rightarrow p-\epsilon \frac{\partial V}{\partial q}
\end{aligned}
$$

Sampling

Sometimes chains get "stuck"

Sometimes chains get "stuck"

Analysis

It's time to calculate some expectations!

$$
\hat{f}=\frac{1}{N} \sum_{n=1}^{N} f\left(\theta_{i}\right)
$$

Under mild conditions, Monte Carlo expectations are distributed around the true value

$$
\hat{f} \sim \mathcal{N}\left(\mathbb{E}[f], \operatorname{MCSE}^{2}\right)
$$

The Monte Carlo Standard Error measures the precision of the Monte Carlo estimate

$$
\operatorname{MCSE}^{2}=\frac{\operatorname{Var}(f)}{\operatorname{ESS}}
$$

The Effective Sample Size is roughly the number of independent samples generated in the chain

$$
\mathrm{ESS}=\frac{N}{1+2 \sum_{n=1}^{N} \rho_{n}}
$$

Careful inspection of Monte Carlo estimates is always a good idea

Inference for Stan model: example_model
1 chains: each with iter=(1000); warmup=(0); thin=(1); 1000 iterations saved.
Warmup took (0.0081) seconds, 0.0081 seconds total Sampling took (0.012) seconds, 0.012 seconds total

	Mean	MCSE	StdDev	5%	50%	95%	N_Eff	N_Eff/s	R_hat
lp__	-0.53	$3.3 \mathrm{e}-02$	$7.1 \mathrm{e}-01$	-2.0	-0.25	$-2.3 \mathrm{e}-03$	460	36797	1.00
accept_stat_-_	0.85	$6.7 \mathrm{e}-03$	$2.1 \mathrm{e}-01$	0.36	0.95	$1.0 \mathrm{e}+00$	1000	80019	1.00
stepsize__-	1.5	$7.2 \mathrm{e}-15$	$5.1 \mathrm{e}-15$	1.5	1.5	$1.5 \mathrm{e}+00$	0.50	40	1.00
treedepth_-	0.48	$1.8 \mathrm{e}-02$	$5.0 \mathrm{e}-01$	0.00	0.00	$1.0 \mathrm{e}+00$	806	64458	1.00
mu	3.9	$5.0 \mathrm{e}-02$	$1.0 \mathrm{e}+00$	2.2	3.9	$5.6 \mathrm{e}+00$	419	33557	1.0

You can use MCMC to validate your model as well

$$
\pi(\tilde{\mathcal{D}} \mid \mathcal{D})=\int \mathrm{d} \theta \pi(\tilde{\mathcal{D}} \mid \theta) \pi(\theta \mid \mathcal{D})
$$

You can use MCMC to validate your model as well

$$
\begin{aligned}
& \pi(\tilde{\mathcal{D}} \mid \mathcal{D})=\int \mathrm{d} \theta \pi(\tilde{\mathcal{D}} \mid \theta) \pi(\theta \mid \mathcal{D}) \\
& \theta \sim \pi(\theta \mid \mathcal{D}) \quad \tilde{\mathcal{D}} \sim \pi(\tilde{\mathcal{D}} \mid \theta)
\end{aligned}
$$

You can use MCMC to validate your model as well

You can use MCMC to validate your model as well

You can use MCMC to validate your model as well

An Introduction to
Hamiltonian Monte Carlo

Random Walk Metropolis generates transitions with a "guided" diffusion

$$
T\left(\theta, \theta^{\prime}\right)=\mathcal{N}\left(\theta^{\prime} \mid \theta, \sigma^{2}\right) \min \left(1, \frac{\pi\left(\theta^{\prime}\right)}{\pi(\theta)}\right)
$$

While the Gibbs sampler scans through conditional transitions

$$
T\left(\theta, \theta^{\prime}\right)=\prod_{i} \pi\left(\theta_{i}^{\prime} \mid \theta_{j \backslash i}\right)
$$

In order to understand the efficacy of these transitions we have to consider the distribution of probability mass

In practice, MCMC performance is limited by

 the complex distribution of posterior massRandom walk Metropolis sampling explores only slowly

Random walk Metropolis sampling explores only slowly

Gibbs sampling doesn't fare much better

Gibbs sampling doesn't fare much better

The problem is that RWM and Gibbs explore incoberently

The problem is that RWM and Gibbs explore incoberently

The problem is that RWM and Gibbs explore incoberently

The problem is that RWM and Gibbs explore incoberently

The problem is that RWM and Gibbs explore incoberently

How can we explore coherently?

How can we explore coherently?

Hamiltonian flow is a coherent, measure-preserving map

$$
q \rightarrow(p, q)
$$

Hamiltonian flow is a coherent, measure-preserving map

$$
H(p, q) \rightarrow e^{-H(p, q)} \mathrm{d}^{n} p \mathrm{~d}^{n} q
$$

Which is exactly what we need for a Markov transition

$$
T\left(q^{\prime}, q\right)=\pi(p) \delta\left(\left(p^{\prime}, q^{\prime}\right)-\phi_{\tau}(p, q)\right)
$$

We just need to define the Hamiltonian appropriately

$$
H(p, q)=-\log \pi(p, q)
$$

We just need to define the Hamiltonian appropriately

$$
\begin{aligned}
H(p, q)= & -\log \pi(p, q) \\
& -\log \pi(p \mid q) \pi(q)
\end{aligned}
$$

We just need to define the Hamiltonian appropriately

$$
\begin{aligned}
H(p, q)= & -\log \pi(p, q) \\
& -\log \pi(p \mid q) \pi(q) \\
& -\log \pi(p \mid q)-\log \pi(q)
\end{aligned}
$$

We just need to define the Hamiltonian appropriately

$$
\begin{aligned}
H(p, q)= & -\log \pi(p, q) \\
& -\log \pi(p \mid q) \pi(q) \\
& -\log \pi(p \mid q)-\log \pi(q) \\
& T
\end{aligned}
$$

We just need to define the Hamiltonian appropriately

$$
\begin{aligned}
H(p, q)= & -\log \pi(p, q) \\
& -\log \pi(p \mid q) \pi(q) \\
& -\log \pi(p \mid q)-\log \pi(q) \\
& V
\end{aligned}
$$

Quadratic kinetic energies with constant metrics emulate dynamics on a Euclidean manifold

$$
\pi(p \mid q)=\mathcal{N}(0, M)
$$

$$
T=\frac{1}{2} p_{i} p_{j}\left(M^{-1}\right)^{i j}
$$

The coherent flow the Markov chain along the target distribution, avoiding random walk behavior

The coherent flow the Markov chain along the target distribution, avoiding random walk behavior

The coherent flow the Markov chain along the target distribution, avoiding random walk behavior

The coherent flow the Markov chain along the target distribution, avoiding random walk behavior

Unfortunately, Euclidean HMC is sensitive to large variations in curvature

As well as variations in the target density

$$
\Delta V=\Delta T=\frac{n}{2}
$$

These weaknesses are particularly evident in hierarchical models

$$
\pi(\mathbf{x}, v)=\prod_{i=1}^{n} \pi\left(x_{i} \mid v\right) \pi(v)
$$

These weaknesses are particularly evident in hierarchical models

These weaknesses are particularly evident in hierarchical models

These weaknesses are particularly evident in hierarchical models

These weaknesses are particularly evident in hierarchical models

Quadratic kinetic energies with dynamic metrics emulate dynamics on a Riemannian manifold

$$
\pi(p \mid q)=\mathcal{N}(0, \Sigma(q))
$$

$$
T=\frac{1}{2} p_{i} p_{j}\left(\Sigma^{-1}(q)\right)^{i j}+\frac{1}{2} \log |\Sigma(q)|
$$

The Riemannian HMC locally standardizes the target distribution

The Riemannian HMC locally standardizes the target distribution

And the log determinant admits full exploration of the funnel

And the log determinant admits full exploration of the funnel

Unfortunately, a naive implementation of HMC requires significant user input

$$
\frac{d q}{d t}=+M^{-1} p
$$

$$
\frac{d p}{d t}=-\frac{\partial V}{\partial q}
$$

Unfortunately, a naive implementation of HMC requires significant user input

$$
\begin{aligned}
& q \rightarrow q+\epsilon M^{-} \\
& p \rightarrow p-\epsilon \frac{\partial V}{\partial q}
\end{aligned}
$$

Unfortunately, a naive implementation
of HMC requires significant user input

$$
\begin{aligned}
q & \rightarrow q+\epsilon M^{-1} p \\
p & \rightarrow p-\epsilon \frac{\partial V}{\partial q} \\
\pi(\text { accept }) & =\min \left(1, \frac{\pi\left(\Phi_{\tau}(p, q)\right)}{\pi(p, q)}\right)
\end{aligned}
$$

Unfortunately, a naive implementation of HMC requires significant user input

$$
\begin{aligned}
q & \rightarrow q+\epsilon M^{-1} p \\
p & \rightarrow p-\epsilon \frac{\partial V}{\partial q} \\
\pi(\text { accept }) & =\min \left(1, \frac{\pi\left(\Phi_{\tau}(p, q)\right)}{\pi(p, q)}\right)
\end{aligned}
$$

Unfortunately, a naive implementation of HMC requires significant user input

$$
\begin{aligned}
& q \rightarrow q+\epsilon M^{-1} p \\
& p \rightarrow p-\epsilon \frac{\partial \boldsymbol{V}}{\partial q}
\end{aligned}
$$

$\pi($ accept $)=\min \left(1, \frac{\pi\left(\Phi_{\tau}(p, q)\right)}{\pi(p, q)}\right)$

Unfortunately, a naive implementation of HMC requires significant user input

$$
\begin{aligned}
& q \rightarrow q+\epsilon M^{-1} p \\
& p \rightarrow p-\epsilon \frac{\partial V}{\partial q}
\end{aligned}
$$

$\pi($ accept $)=\min \left(1, \frac{\pi\left(\Phi_{\tau}(p, q)\right)}{\pi(p, q)}\right)$

Unfortunately, a naive implementation of HMC requires significant user input

$$
q \rightarrow q+\epsilon M^{-1} p
$$

$\pi($ accept $)=\min \left(1, \frac{\pi\left(\Phi_{\tau}(p, q)\right)}{\pi(p, q)}\right)$

Unfortunately, a naive implementation of HMC requires significant user input

$$
q \rightarrow q+\epsilon M^{-1} p
$$

$\pi($ accept $)=\min \left(1, \frac{\pi\left(\Phi_{\tau}(p, q)\right)}{\pi(p, q)}\right)$

Unfortunately, a naive implementation of HMC requires significant user input

$$
q \rightarrow q+\epsilon M^{-1} p
$$

$\pi($ accept $)=\min \left(1, \frac{\pi\left(\Phi_{\boldsymbol{\tau}}(p, q)\right)}{\pi(p, q)}\right)$

Stan

Hamiltonian Monte Carlo

Modeling
Language
Automatic
Differentiation
Adaptation

Stan

Hamiltonian Monte Carlo

Modeling
Language

Automatic
 Differentiation

A strongly typed modeling language allows users to specify complex models with minimal effort

```
data {
    int<lower=1> N;
    rea1 x[N];
}
transformed data {
    vector[N] mu;
    cov_matrix[N] Sigma;
    for (i in 1:N)
        mu[i] <- 0;
    for (i in 1:N)
        for (j in 1:N)
            Sigma[i,j] <- exp(-pow(x[i] - x[j],2))
                        + if_else(i==j, 0.1, 0.0);
}
parameters {
```


Stan

Hamiltonian Monte Carlo

Modeling Language
Automatic
Differentiation

Automatic differentiation enables efficient, exact computation of the necessary gradients

$$
f(x, y)=x^{2}+y^{2}
$$

Automatic differentiation enables efficient, exact computation of the necessary gradients

Stan

Hamiltonian Monte Carlo

Modeling

Language

Automatic
Differentiation

Adaptation

Free parameters, such as the step size, can be adapted to each target distribution

We can also adapt the integration time using the No-U-Turn Sampler

0

We can also adapt the integration time using the No-U-Turn Sampler

We can also adapt the integration time using the No-U-Turn Sampler

We can also adapt the integration time using the No-U-Turn Sampler

The Stan user community is active and rapidly growing, coming from such diverse fields as

Influenza Epidemiology
Political Science / International Relations
Demography / Sociology
Cardiovascular and Substance-Abuse
Epidemiology
Evolutionary Biology
Neuropsychopharmacology /
Psychophysiology
Fish Population Dynamics
Evolutionary Anthropology
Exoplanet Astrophysics

Stan

Hamiltonian Monte Carlo

Modeling
Language
Automatic
Differentiation
Adaptation

Backups

Optimal numerical integration suggests using the Hessian, but the Hessian isn't positive-definite

$$
\Sigma(q)_{i j} \neq \partial_{i} \partial_{j} V(q)
$$

Fisher-Rao is both impractical and ineffective

$$
\Sigma(q)_{i j}=\mathbb{E}_{\mathcal{D}}\left[\partial_{i} \partial_{j} V(q \mid \mathcal{D})\right]
$$

Fisher-Rao is both impractical and ineffective

$$
\Sigma(q)_{i j}=\mathbb{E}_{\mathcal{D}}\left[\partial_{i} \partial_{j} V(q \mid \mathcal{D})\right]
$$

$\partial_{i} \partial_{j} V(q \mid \mathcal{D})$

Fisher-Rao is both impractical and ineffective

$$
\Sigma(q)_{i j}=\mathbb{E}_{\mathcal{D}}\left[\partial_{i} \partial_{j} V(q \mid \mathcal{D})\right]
$$

$$
\mathbb{E}_{\mathcal{D}}\left[\partial_{i} \partial_{j} V(q \mid \mathcal{D})\right]
$$

We can regularize without appealing to expectations

$$
\begin{gathered}
\Sigma_{i j}(q)=\left[\exp \left(\alpha H_{i k}\right)+\exp \left(-\alpha H_{i k}\right)\right] \\
\cdot H_{k l} \\
{\left[\exp \left(\alpha H_{l j}\right)-\exp \left(-\alpha H_{l j}\right)\right]^{-1}}
\end{gathered}
$$

The "SoftAbs" metric serves as a differentiable absolute value of the Hessian

Free parameters, such as the step size, can be adapted to each target distribution

$$
\pi(\operatorname{accept})=\min \left(1, \frac{\pi\left(\phi_{\tau}(p, q)\right)}{\pi(p, q)}\right)
$$

Free parameters, such as the step size, can be adapted to each target distribution
$\pi(\operatorname{accept})=\min \left(1, e^{H(p, q)-H\left(\phi_{\tau}(p, q)\right)}\right)$

Free parameters, such as the step size, can be adapted to each target distribution

Free parameters, such as the step size, can be adapted to each target distribution

Free parameters, such as the step size, can be adapted to each target distribution

