# Efficient Bayesian inference with Hamiltonian Monte Carlo

Michael Betancourt University of Warwick Machine Learning Summer School 2014 April 29, 2014





Model Complexity







# Markov Chain Monte Carlo in Practice



Bayesian inference is a powerful tool for asking germane statistical questions

Bayesian inference is a powerful tool for asking germane statistical questions



Bayesian inference is a powerful tool for asking germane statistical questions

# $\pi(\mathcal{D}| heta)\,\pi( heta)$

Bayesian inference is a powerful tool for asking germane statistical questions

# $\pi( heta | \mathcal{D}) \propto \pi(\mathcal{D} | heta) \pi( heta)$

# But what makes a good statistical question?

#### But what makes a good statistical question?

# $f(\hat{\theta}), \, \hat{\theta} = \operatorname{argmax} \pi(\theta)$

#### But what makes a good statistical question?

# $f(\hat{\theta}), \, \hat{\theta} = \operatorname{argmax} \pi(\theta)$

# $\mathbb{E}[f(\theta)] = \int \mathrm{d}\theta \,\pi(\theta) \,f(\theta)$

Probability densities are a computational convenience -our questions should not rely on them Probability densities are a computational convenience -our questions should not rely on them

# $\pi: \mathcal{B}(\Omega) \to [0,1]$

Probability densities are a computational convenience -- our questions should not rely on them

# $\pi:\mathcal{B}(\Omega)\to [0,1]$

 $\theta: \Omega \to \mathbb{R}^n$  $d\pi(\theta) = d\theta \,\pi(\theta)$ 

Probability mass is fundamental, not density!

$$f(\hat{\theta}), \, \hat{\theta} = \operatorname{argmax} \pi(\theta)$$

$$\mathbb{E}[f(\theta)] = \int \mathrm{d}\theta \,\pi(\theta) \,f(\theta)$$

#### Probability mass is fundamental, not density!

# $f(\hat{\theta}), \hat{\theta} = \operatorname{argmax} \pi(\theta)$

# $\mathbb{E}[f(\theta)] = \int \mathrm{d}\theta \, \pi(\theta) \, f(\theta)$

















Well-posed queries can be answered by integrating the posterior

$$\mathbb{E}[f(\theta)] = \int \mathrm{d}\theta \, f(\theta) \, \pi(\theta | \mathcal{D})$$

Well-posed queries can be answered by integrating the posterior

$$\mathbb{E}[f(\theta)] = \int \mathrm{d}\theta \, f(\theta) \, \pi(\theta | \mathcal{D})$$

$$\pi(\theta_2,\ldots,\theta_n|\mathcal{D}) = \int \mathrm{d}\theta_1 \,\pi(\theta|\mathcal{D})$$

Well-posed queries can be answered by integrating the posterior

$$\mathbb{E}[f(\theta)] = \int \mathrm{d}\theta \, f(\theta) \, \pi(\theta | \mathcal{D})$$

$$\pi(\theta_2,\ldots,\theta_n|\mathcal{D}) = \int \mathrm{d}\theta_1 \,\pi(\theta|\mathcal{D})$$

$$\pi(\theta_2,\ldots,\theta_n|\theta_1,\mathcal{D}) = \frac{\pi(\theta|\mathcal{D})}{\int \mathrm{d}\theta_1 \,\pi(\theta|\mathcal{D})}$$

Building a posterior is straightforward: Bayesian inference is hard because integration is hard

$$\mathbb{E}[f(\theta)] = \int \mathrm{d}\theta \, f(\theta) \, \pi(\theta|\mathcal{D})$$

# The key to efficient integration is Markov Chain Monte Carlo

#### Google books Ngram Viewer

Markov Chain Monte Carlo



Here the posterior is represented with a set of samples from which expectations can be efficiently computed

# $p(\theta|\mathcal{D}) \to \{\theta_1, \ldots, \theta_n\}$

Here the posterior is represented with a set of samples from which expectations can be efficiently computed

 $p(\theta | \mathcal{D}) \rightarrow \{\theta_1, \ldots, \theta_n\}$ 

 $\mathbb{E}[f(\theta)] \approx \frac{1}{N} \sum_{i=1}^{N} f(\theta_i)$ 

We generate those samples with a Markov chain, typically defined by its transition kernel

$$\pi'(\theta) = \int \mathrm{d}\theta \, T(\theta, \theta') \, \pi(\theta')$$

# In practice, MCMC proceeds in three stages
#### In practice, MCMC proceeds in three stages



#### In practice, MCMC proceeds in three stages



#### In practice, MCMC proceeds in three stages



#### Warmup



A Markov chain will preserve its stationary distribution...

# $\pi(\theta) = \int \mathrm{d}\theta \, T(\theta, \theta') \, \pi(\theta')$

$$\pi(\theta) = \int \mathrm{d}\theta \, T(\theta, \theta') \dots \int \mathrm{d}\theta''' \, T(\theta''', \theta'''') \, \pi(\theta'''')$$











In practice it's easier to consider the state of the Markov chain relative to *the typical set* 



In practice it's easier to consider the state of the Markov chain relative to *the typical set* 



In practice it's easier to consider the state of the Markov chain relative to *the typical set* 



#### In high dimensions the typical set is often vary far from any MAP



#### How do we know that we've converged? Visual diagnostics are appealing...



#### But they can be misleading!



### The best strategy is to run multiple chains from diffuse initializations and compare



$$\hat{R} = \sqrt{\frac{N-1}{N} + \frac{1}{N}\frac{B}{W}}$$

We can also learn sampler parameters during warmup, provided we've already converged

 $q \to q + \epsilon M^{-1}p$ 

 $p \rightarrow p - \epsilon \frac{\partial V}{\partial q}$ 

#### Sampling



#### Sometimes chains get "stuck"



#### Sometimes chains get "stuck"



#### Analysis



#### It's time to calculate some expectations!



### Under mild conditions, Monte Carlo expectations are distributed around the true value

 $\hat{f} \sim \mathcal{N}(\mathbb{E}[f], \mathrm{MCSE}^2)$ 

The *Monte Carlo Standard Error* measures the precision of the Monte Carlo estimate



The *Effective Sample Size* is roughly the number of independent samples generated in the chain





#### Careful inspection of Monte Carlo estimates is always a good idea

Inference for Stan model: example\_model
1 chains: each with iter=(1000); warmup=(0); thin=(1); 1000 iterations saved.

Warmup took (0.0081) seconds, 0.0081 seconds total Sampling took (0.012) seconds, 0.012 seconds total

|             | Mean  | MCSE    | StdDev  | 5%   | 50%   | 95%      | N_Eff | N_Eff/s | R_hat |
|-------------|-------|---------|---------|------|-------|----------|-------|---------|-------|
| lp          | -0.53 | 3.3e-02 | 7.1e-01 | -2.0 | -0.25 | -2.3e-03 | 460   | 36797   | 1.00  |
| accept_stat | 0.85  | 6.7e-03 | 2.1e-01 | 0.36 | 0.95  | 1.0e+00  | 1000  | 80019   | 1.00  |
| stepsize    | 1.5   | 7.2e-15 | 5.1e-15 | 1.5  | 1.5   | 1.5e+00  | 0.50  | 40      | 1.00  |
| treedepth   | 0.48  | 1.8e-02 | 5.0e-01 | 0.00 | 0.00  | 1.0e+00  | 806   | 64458   | 1.00  |
| mu          | 3.9   | 5.0e-02 | 1.0e+00 | 2.2  | 3.9   | 5.6e+00  | 419   | 33557   | 1.0   |

$$\pi\left(\tilde{\mathcal{D}}|\mathcal{D}\right) = \int \mathrm{d}\theta \,\pi\left(\tilde{\mathcal{D}}|\theta\right) \,\pi\!\left(\theta|\mathcal{D}\right)$$

 $\pi\left(\tilde{\mathcal{D}}|\mathcal{D}\right) = \int \mathrm{d}\theta \,\pi\left(\tilde{\mathcal{D}}|\theta\right) \,\pi\left(\theta|\mathcal{D}\right)$ 

 $\theta \sim \pi \Big( \theta | \mathcal{D} \Big) \qquad \tilde{\mathcal{D}} \sim \pi \Big( \tilde{\mathcal{D}} | \theta \Big)$ 









### An Introduction to Hamiltonian Monte Carlo



### Random Walk Metropolis generates transitions with a "guided" diffusion

 $T(\theta, \theta') = \mathcal{N}(\theta'|\theta, \sigma^2) \min\left(1, \frac{\pi(\theta')}{\pi(\theta)}\right)$
## While the Gibbs sampler scans through conditional transitions

# $T(\theta, \theta') = \prod_{i} \pi(\theta'_{i} | \theta_{j \setminus i})$

In order to understand the efficacy of these transitions we have to consider the distribution of probability mass



#### In practice, MCMC performance is limited by the complex distribution of posterior mass



#### Random walk Metropolis sampling explores only slowly

#### Random walk Metropolis sampling explores only slowly



#### Gibbs sampling doesn't fare much better

### Gibbs sampling doesn't fare much better







### How can we explore coherently?



### How can we explore coherently?



Hamiltonian flow is a coherent, measure-preserving map

 $q \to (p,q)$ 

Hamiltonian flow is a coherent, measure-preserving map

### $q \rightarrow (p,q)$

### $H(p,q) \to e^{-H(p,q)} \mathrm{d}^n p \, \mathrm{d}^n q$

#### Which is exactly what we need for a Markov transition

### $T(q',q) = \pi(p)\,\delta((p',q') - \phi_\tau(p,q))$

### $H(p,q) = -\log \pi(p,q)$

### $H(p,q) = -\log \pi(p,q)$

 $-\log \pi(p|q) \,\pi(q)$ 

### $H(p,q) = -\log \pi(p,q)$

 $-\log \pi(p|q) \pi(q)$ 

 $-\log \pi(p|q) - \log \pi(q)$ 

### $H(p,q) = -\log \pi(p,q)$

 $-\log \pi(p|q) \pi(q)$ 

 $-\log \pi(p|q) - \log \pi(q)$ T

### $H(p,q) = -\log \pi(p,q)$

 $-\log \pi(p|q) \, \pi(q)$ 

 $-\log \pi(p|q) - \log \pi(q)$ 

Quadratic kinetic energies with constant metrics emulate dynamics on a Euclidean manifold

 $\pi(p|q) = \mathcal{N}(0, M)$ 

 $T = \frac{1}{2} p_i p_j \left( M^{-1} \right)^{ij}$ 





## Unfortunately, Euclidean HMC is sensitive to large variations in curvature



As well as variations in the target density

# $\Delta V = \Delta T = \frac{n}{2}$











Quadratic kinetic energies with dynamic metrics emulate dynamics on a Riemannian manifold

$$\pi(p|q) = \mathcal{N}(0, \Sigma(q))$$

$$T = \frac{1}{2} p_i p_j \left( \Sigma^{-1}(q) \right)^{ij} + \frac{1}{2} \log |\Sigma(q)|$$

## The Riemannian HMC locally standardizes the target distribution


# The Riemannian HMC locally standardizes the target distribution



#### And the log determinant admits full exploration of the funnel



#### And the log determinant admits full exploration of the funnel



$$\frac{dq}{dt} = +M^{-1}p$$

$$\frac{dp}{dt} = -\frac{\partial V}{\partial q}$$

 $q \to q + \epsilon M^{-1}p$  $p \to p - \epsilon \frac{\partial V}{\partial q}$ 

 $q \to q + \epsilon M^{-1}p$  $p \rightarrow p - \epsilon \frac{\partial V}{\partial q}$  $\pi(\operatorname{accept}) = \min\left(1, \frac{\pi(\Phi_{\tau}(p, q))}{\pi(p, q)}\right)$ 

$$q \to q + \epsilon M^{-1}p$$
$$p \to p - \epsilon \frac{\partial V}{\partial q}$$
$$(\text{accept}) = \min\left(1, \frac{\pi(\Phi_{\tau}(p, q))}{\pi(p, q)}\right)$$

 $\pi$ 

 $q \to q + \epsilon M^{-1}p$  $p \rightarrow p - \epsilon \frac{\partial V}{\partial q}$  $\pi(\text{accept}) = \min\left(1, \frac{\pi(\Phi_{\tau}(p, q))}{\pi(p, q)}\right)$ 

 $q \to q + \epsilon M^{-1}p$  $p \rightarrow p - \epsilon \frac{\partial V}{\partial a}$  $\pi(\text{accept}) = \min\left(1, \frac{\pi(\Phi_{\tau}(p, q))}{\pi(p, q)}\right)$ 

 $q \rightarrow q + \epsilon M^{-1}p$  $p \rightarrow p - \epsilon \frac{\partial V}{\partial q}$  $\pi(\text{accept}) = \min\left(1, \frac{\pi(\Phi_{\tau}(p, q))}{\pi(p, q)}\right)$ 

 $q \rightarrow q + \epsilon M^{-1} p$  $p \to p - \epsilon \frac{\partial V}{\partial q}$  $\pi(\text{accept}) = \min\left(1, \frac{\pi(\Phi_{\tau}(p, q))}{\pi(p, q)}\right)$ 

 $q \to q + \epsilon M^{-1}p$  $p \rightarrow p - \epsilon \frac{\partial V}{\partial q}$  $\pi(\text{accept}) = \min\left(1, \frac{\pi(\Phi_{\tau}(p, q))}{\pi(p, q)}\right)$ 

### Stan

#### Hamiltonian Monte Carlo

Modeling Language Automatic Differentiation

Adaptation

### Stan

#### Hamiltonian Monte Carlo

Modeling Language

Automatic Differentiation

Adaptation

A strongly typed modeling language allows users to specify complex models with minimal effort

```
data {
  int<lower=1> N;
  real x[N];
}
transformed data {
  vector[N] mu;
  cov_matrix[N] Sigma;
  for (i in 1:N)
    mu[i] <- 0;
  for (i in 1:N)
    for (j in 1:N)
      Sigma[i,j] <- exp(-pow(x[i] - x[j],2))</pre>
                     + if_else(i==j, 0.1, 0.0);
parameters {
 vector[N] y;
```

### Stan

#### Hamiltonian Monte Carlo

#### Modeling Language

Automatic Differentiation

Adaptation

Automatic differentiation enables efficient, exact computation of the necessary gradients

$$f(x,y) = x^2 + y^2$$

Automatic differentiation enables efficient, exact computation of the necessary gradients



### Stan

#### Hamiltonian Monte Carlo

#### Modeling Language

Automatic Differentiation

Adaptation



#### We can also adapt the integration time using the No-U-Turn Sampler

0

#### We can also adapt the integration time using the No-U-Turn Sampler



#### We can also adapt the integration time using the No-U-Turn Sampler



We can also adapt the integration time using the No-U-Turn Sampler



The Stan user community is active and rapidly growing, coming from such diverse fields as

Influenza Epidemiology Political Science / International Relations Demography / Sociology Cardiovascular and Substance-Abuse Epidemiology Evolutionary Biology Neuropsychopharmacology / Psychophysiology Fish Population Dynamics Evolutionary Anthropology **Exoplanet** Astrophysics

### Stan

#### Hamiltonian Monte Carlo

Modeling Language Automatic Differentiation

Adaptation

# Backups

Optimal numerical integration suggests using the Hessian, but the Hessian isn't positive-definite

 $\Sigma(q)_{ij} \neq \partial_i \partial_j V(q)$ 

Fisher-Rao is both impractical and ineffective

### $\Sigma(q)_{ij} = \mathbb{E}_{\mathcal{D}} \left[ \partial_i \partial_j V(q | \mathcal{D}) \right]$

#### Fisher-Rao is both impractical and ineffective

### $\Sigma(q)_{ij} = \mathbb{E}_{\mathcal{D}} \left[ \partial_i \partial_j V(q | \mathcal{D}) \right]$



 $\partial_i \partial_j V(q|\mathcal{D})$ 

#### Fisher-Rao is both impractical and ineffective

### $\Sigma(q)_{ij} = \mathbb{E}_{\mathcal{D}} \left[ \partial_i \partial_j V(q | \mathcal{D}) \right]$



 $\mathbb{E}_{\mathcal{D}}\left[\partial_i\partial_j V(q|\mathcal{D})\right]$ 

We can regularize without appealing to expectations

$$\Sigma_{ij}(q) = \left[\exp(\alpha H_{ik}) + \exp(-\alpha H_{ik})\right]$$
$$\cdot H_{kl}$$

 $\left[\exp(\alpha H_{lj}) - \exp(-\alpha H_{lj})\right]^{-1}$ 

## The "SoftAbs" metric serves as a differentiable absolute value of the Hessian



 $\pi(\operatorname{accept}) = \min\left(1, \frac{\pi(\phi_{\tau}(p, q))}{\pi(p, q)}\right)$ 

$$\pi(\operatorname{accept}) = \min\left(1, e^{H(p,q) - H(\phi_{\tau}(p,q))}\right)$$


## Free parameters, such as the step size, can be adapted to each target distribution



## Free parameters, such as the step size, can be adapted to each target distribution

